首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleate pool boiling heat transfer coefficient of ammonia/water mixture was investigated on a cylindrical heated surface at low pressure of 4-8 bar and at low mass fraction of 0 < xNH3 < 0.3 and at different heat flux. The effect of mass fraction, heat flux and pressure on boiling heat transfer coefficient was studied. The results indicate that the heat transfer coefficient in the mixture decreases with increase in ammonia mass fraction, increases with increase in heat flux and pressure in the investigated range. The measured heat transfer coefficient was compared with existing correlations. The experimental data were predicted with an accuracy of ±20% by the correlation of Calus&Rice, correlation of Stephan-Koorner and Inoue-Monde correlation for ammonia/water mixture in the investigated range of low ammonia mass fraction. The empirical constant of the first two correlations is modified by fitting the correlation to the present experimental data. The modified Calus&Rice correlation predicts the present experimental data with an accuracy of ±18% and the modified Stephan-Koorner correlation with an accuracy of ±16%.  相似文献   

2.
An experimental study was performed to understand the nucleate boiling heat transfer of water–CuO nanoparticles suspension (nanofluids) at different operating pressures and different nanoparticle mass concentrations. The experimental apparatus is a miniature flat heat pipe (MFHP) with micro-grooved heat transfer surface of its evaporator. The experimental results indicate that the operating pressure has great influence on the nucleate boiling characteristics in the MFHP evaporator. The heat transfer coefficient and the critical heat flux (CHF) of nanofluids increase greatly with decreasing pressure as compared with those of water. The heat transfer coefficient and the CHF of nanofluids can increase about 25% and 50%, respectively, at atmospheric pressure whereas about 100% and 150%, respectively, at the pressure of 7.4 kPa. Nanoparticle mass concentration also has significant influence on the boiling heat transfer and the CHF of nanofluids. The heat transfer coefficient and the CHF increase slowly with the increase of the nanoparticle mass concentration at low concentration conditions. However, when the nanoparticle mass concentration is over 1.0 wt%, the CHF enhancement is close to a constant number and the heat transfer coefficient deteriorates. There exists an optimum mass concentration for nanofluids which corresponds to the maximum heat transfer enhancement and this optimum mass concentration is 1.0 wt% at all test pressures. The experiment confirmed that the boiling heat transfer characteristics of the MFHP evaporator can evidently be strengthened by using water/CuO nanofluids.  相似文献   

3.
利用格子Boltzmann方法模拟二维水平通道内水的流动沸腾过程,获得不同壁面过热度下流型特点和不同因素对换热过程的影响规律。结果表明,随着壁面过热度升高,流道内流型依次经历从泡状流、弹状流到反环流的转变,平均热流密度和平均换热系数先增大后减小。入口流速降低会使流道内出现受限气泡流,核态沸腾受到抑制。提高入口流速能够有效促进气泡脱离,壁面平均换热系数随入口流速增大而增大,但增长速率有所减小。减小通道宽度有利于汽化现象发生,核态沸腾得到强化,壁面平均换热系数有所提高。  相似文献   

4.
In desalinization devices and some heat exchangers making use of low-quality heat energy, both wall temperatures and wall heat fluxes of the heated tubes are generally quite low; hence they cannot cause boiling in flooded tube-bundle evaporators with common large tube spacing. However, when the tube spacing is very small, the incipient boiling in restricted spaces can generate and results in higher heat transfer than that of pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes and test pressures on the boiling heat transfer of water in restricted spaces of the compact in-line bundles consisting of smooth horizontal tubes. The experimental results show that tube spacing and tube position have significant effects on the boiling heat transfer in a compact tube bundle. There is an optimum tube spacing that provides the largest heat transfer coefficient at the same heat flux.  相似文献   

5.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

6.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

7.
A semi-empirical model for pool boiling over porous surfaces is presented. The pressure drop across the porous surface is estimated using Darcy?'s law. The significance of the latent heat flux contribution for highly porous surfaces is examined. Two nucleation factors are defined and correlated in terms of measurable quantities using literature data. An expression for the total heat flux in terms of the wall superheat, pore geometry and the physical properties of the liquid is presented. The present model matches well with literature data on pool boiling over porous surfaces, both flat surfaces and tubes from four different sources, thus validating the present approach.  相似文献   

8.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

9.
The paper presents experimental data on pool boiling heat transfer of tandem tubes, arranged one above the other in the same vertical plane. The outer surface of the tubes is provided with the novel microstructures. The structure elements are micropins created by electrolytic deposition of copper upon the tube, using a specially treated polycarbonate foil. By this technique the pins diameter can be varied from 0.1 μm up to 25 μm, the pins height goes up to 100 μm at densities up to 1 × 109 pins/cm2 and pins inclination almost up to 180° regarding the base surface. Micropins with several different inclinations can be created simultaneously on the same surface.Experiments were conducted with two different microstructures using the refrigerant R134a and the highly wetting Fluorinert liquid FC-3284 at pressures of 5-9 bar and 0.5-1.5 bar, respectively. The advantages of the novel microstructure regarding the boiling heat transfer for tandem tubes turned out to be practically the same as for a single tube arrangement. Microstructured tubes have the superheat independent on the heat flux, they show a very low boiling inception superheats (below 2 K), are highly effective in comparison with a technically smooth tubes, and operate stable over the long periods of time.  相似文献   

10.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

11.
The heat transfer characteristics of supercritical fluids in tubes have been considered indispensable for the design and optimization of the heat exchanger and the energy conversion system. Specifically the cooling heat transfer of supercritical R1234ze(E) in horizontal tubes is a promising heat-power conversion technology; however, there is a scarcity of conducted research in available literature. The present work, the first-ever study in this direction, aims to thoroughly investigate the heat transfer characteristics of supercritical R1234ze(E) which is cooled in horizontal tubes. Experimental work was performed to thoroughly explore and inspect the heat transfer characteristics of supercritical R1234ze(E) passing through the tube of 4.12 mm diameter at 4–5 MPa pressure and 240–400 kg/m2 s mass flux. Furthermore, the simulation study, supporting the experimental investigation under the same conditions of pressure and mass flux, extended the range of tube diameter up to 9.44 mm. The effects of pressure, mass flux and tube diameter on the heat transfer coefficient were carefully analyzed in the present research work. Based on the simulation results and experimental results, heat transfer correlations were newly developed by separating the region above and below the pseudo-critical temperature. The average absolute deviation between the calculated Nusselt numbers by the numerical correlation and the simulation results was found 2.87%; the average absolute deviation between the calculated Nusselt numbers by the experimental correlation and the experimental results was found 5.3%.  相似文献   

12.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

13.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

14.
An experimental study was carried out to understand the nucleate boiling characteristics and the critical heat flux (CHF) of water, the water based nanofluids and the water based nanoparticle-suspensions in vertical small heated tubes with a closed bottom. Here, the nanofluids consisted of the base liquid, the CuO nanoparticles and the surfactant. The nanoparticle-suspensions consisted of the base liquid and CuO nanoparticles. The surfactant was sodium dodecyl benzene sulfate. The study focused on the influence of the nanoparticles and surfactant on the nucleate boiling characteristics and the CHF. The experimental results indicated that the nanoparticle concentrations of the nanofluids and nanoparticle-suspensions in the tubes do not change during the boiling processes; the nanoparticles in the evaporated liquid are totally carried away by the steam. The boiling heat transfer rates of nanofluids are poorer than that of the base liquid. However, the boiling heat transfer rates of nanoparticle-suspensions are better than that of the base liquid. Comparing with the base liquid, the CHF of the nanofluids and the nanoparticle-suspensions is higher. The CHF is only related to nanoparticle mass concentration when the tube length and the tube diameter are fixed. The experiment confirm that there is a thin nanoparticle coating layer on the heated surface after the nanofluids boiling test but there is no coating layer on the heated surface after the nanoparticle-suspensions boiling test. This coating layer is the main reason that deteriorates the boiling heat transfer rates of nanofluids. An empirical correlation was proposed for predicting the CHF of nanofluids boiling in the vertical tubes with closed bottom.  相似文献   

15.
The flow boiling heat transfer coefficients of R-134a/R-290/R-600a (91%:4.068%:4.932% by mass) refrigerant mixture are experimentally arrived in two tubes of diameter 9.52 and 12.7 mm. The tests are conducted to target the varied heat flux condition and stratified flow pattern found in evaporators of refrigerators and deep freezers. The varied heat flux condition is imposed on the refrigerant using a coaxial counter-current heat exchanger test section. The experiments are performed for mass flow rates of the refrigerant mixture between 3 and 5 g s−1 and entry temperature between −8.59 and 5.33°C which are bubble temperatures corresponding to a pressure of 3.2 and 5 bar. The influences of heat flux, mass flow rate, pressure, flow pattern, tube diameter on the heat transfer coefficient are discussed. The profound effects of nucleate boiling prevailing even at higher vapor qualities in evaporators are highlighted. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a.  相似文献   

16.
The flow boiling phenomenon over a heated tube restricted by an interference sleeve, which is a passive enhancement technique, has been analysed using a semi-empirical approach. The liquid boiled was water flowing through an annular cross-section. A model developed earlier for the case of pool boiling over porous surfaces has been adapted after modification to pool boiling with interference surfaces using equivalent geometrical parameters and a modified permeability factor. This was further extended to saturated flow boiling situation using an additive mechanism. The single phase heat transfer coefficient required for the additive mechanism is obtained from an experimental correlation developed in the present study. The suppression factors evaluated for the eight sleeve geometries used in the present investigation are expressed in terms of the single phase Reynolds number and the Martinelli parameter. Very good agreement was observed between the model predictions and experimental data validating the mechanisms postulated. Further, a purely empirical correlation based on the present experimental data has been proposed to estimate the two-phase heat transfer coefficient. While the empirical correlation shows a better fit with the experimental data, the additive model has a physical basis.  相似文献   

17.
Flow boiling heat transfer with the refrigerants R-134a and R-245fa in copper microchannel cold plate evaporators is investigated. Arrays of microchannels of hydraulic diameter 1.09 and 0.54 mm are considered. The aspect ratio of the rectangular cross section of the channels in both test sections is 2.5. The heat transfer coefficient is measured as a function of local thermodynamic vapor quality in the range −0.2 to 0.9, at saturation temperatures ranging from 8 to 30 °C, mass flux from 20 to 350 kg m−2 s−1, and heat flux from 0 to 22 W cm−2. The heat transfer coefficient is found to vary significantly with heat flux and vapor quality, but only slightly with saturation pressure and mass flux for the range of values investigated. It was found that nucleate boiling dominates the heat transfer. In addition to discussing measurement results, several flow boiling heat transfer correlations are also assessed for applicability to the present experiments.  相似文献   

18.
The objective of the present study is to analyze the heat transfer correlations of supercritical CO2 cooled in horizontal circular tubes. In the paper, heat transfer correlations are first reviewed and compared with the experimental data at different heat fluxes. The results show that most of the previous correlations agree well with the experimental data under lower heat flux, but fail to predict the heat transfer coefficient well when the heat flux is as high as 33 kW/m2. The study of buoyancy effect on convective heat transfer shows that buoyancy effect significantly affects the heat transfer with the increase of heat flux, and both free and forced convections operate in the turbulence flow during supercritical CO2 cooling process. The influencing factors on heat transfer coefficient are summarized and the new correlation can be developed with the four dimensionless numbers.  相似文献   

19.
Two-phase friction and heat transfer characteristics for R-22/R-407C inside a 6.5-mm smooth tube are reported in this study. The heat transfer results for G=100 and 400 kg/m2 s were reported in the present study, and the adiabatic frictional pressure drop was recorded in the range of 100 to 700 kg/m2 s. It is found that the development of flow pattern for R-407C falls behind R-22. This may explain the lower pressure drops for R-407C. The major heat transfer mechanism at low mass flux is nucleate boiling, and virtually becomes the convective evaporation as mass flux increase to G=400 krg/m2 s, Meanwhile, the reduction of heat transfer coefficients for R-407C mixtures are especially profound at low mass flux, and the reduction of heat transfer coefficient decreases with the increase of mass flux.  相似文献   

20.
A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within ±20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号