首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrido complexes [MnH(CO)3L1–3] [L1 = 1,2‐bis‐(diphenylphosphanoxy)‐ethane ( 1 ); L2 = 1,2‐bis‐(diisopropylphosphanoxy)ethane ( 2 ); L3 = 1,3‐bis‐(diphenylphosphanoxy)‐propane ( 3 )] were prepared by treating [MnH(CO)5] with the appropriate bidentate ligand by heating to reflux. Photoirradiation of a toluene solution of complexes 1 and 2 in the presence of PPhn(OR)3–n (n = 0, 1; R = Me, Et) leads to the replacement of a CO ligand by the corresponding monodentate phosphite or phosphonite ligand to give new hydrido compounds of formula [MnH(CO)2(L1–2)(L)] [L = P(OMe)3 ( 1a – 2a ); P(OEt)3 ( 1b – 2b ); PPh(OMe)2 ( 1c – 2c ); PPh(OEt)2 ( 1d – 2d )]. All complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopy. In case of compounds 2 and 3 , suitable crystals for X‐ray diffraction studies were isolated.  相似文献   

2.
Two novel tridentate ligands of 2,6‐bis‐[l‐(2,6‐dibromophenylimino) ethyl] pyridine (L1) and2‐acetyl‐6‐[1‐(2,6‐dibromophenylimino) ethyl] pyridine (L2) have been synthesized. The iron(II) complex of L1 and L2 has been characterized with the crystal structure of [Fe(L1)(L2)]2+ [FeCl4]2 CH2Cl2 [monoclinic, P21 (#11), a = 1.0562(4), b = 2.0928(4), c = 1.2914(2) nm, β = 100.12°, V = 2.810(1) nm3 Dc = 1.879 g/cm3 and Z = 2].  相似文献   

3.
Hydrocarbon‐bridged Metal Complexes. L Dicarbonyl Cyclopentadienyl Pyridoyl Iron Complexes as Ligands Dicarbonyl‐cyclopentadienyl‐2‐ and 3‐pyridoyl‐iron (L1, L2) and 2,6‐dicarbonyl‐pyridine‐bis(dicarbonyl‐cyclopentadienyl‐iron) (L3) function as ligands in metal complexes and the N,O‐chelates [(OC)4M(L1)] (M = Mo, W, 8 a, b ) and [(Ph3P)2Cu(L1)]+BF4 ( 9 ) were prepared. Monodentate coordination of L1 and L2 through the pyridine N‐atom occurs in the palladium(II) complexes [Cl2Pd(PnBu3)(L1)] ( 10 ), [Cl2Pd(PnBu3)(L2)] ( 11 ) and [Cl2Pd(L2)2] ( 12 ). Ligand L3 forms the O,N,O‐bis(chelate) [Cl2Zn(L3)] ( 13 ). The crystal and molecular structures of L1, 8 b (M = W), 9–11 and 13 were determined by X‐ray diffraction.  相似文献   

4.
The complexation between N‐methyl‐3‐acetyl‐4‐hydroxyquinolin‐2‐one (NMeQuin) and N‐H‐3‐acetyl‐4‐hydroxy quinolin‐2‐one (NHQuin) with MgCl2, ZnCl2 and BaCl2 has been accomplished. The structure of the resulting complexes 1–5 has been elucidated through elemental analyses, FT‐IR and 1H/13C NMR Spectroscopy and Mass Spectrometry. The spectroscopic data show complexes of the general formula Mg2(OH)L3(H2O)z and ML2(H2O)Z where: M = Zn(II) and Ba(II), L = NMeQuin, NHQuin and z = 2, 4.  相似文献   

5.
The complexes [M(CO)4(pyridyl‐CH=N‐CHRCO2R′)] (M = Cr, Mo; R = H, CH3, CH(CH3)2, CH2CH(CH3)2) were obtained by reaction of the Schiff bases from pyridine‐2‐carboxaldehyde and glycine, L‐alanine, L‐valine or L‐leucine esters with the norbornadiene complexes [M(CO)4(nbd)] and were characterized by IR, 1H and 13C NMR and UV‐vis spectra. The deeply colored complexes exhibit solvatochromism.  相似文献   

6.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

7.
An oxygen atom is selectively inserted into the P?B bond of a borylphosphine ( L1 ) by reaction with Me3NO to afford the corresponding borylphosphinite ( L2 ). This transformation can also be effected when L1 is coordinated to rhodium. The ν(CO) values for trans‐[RhCl(CO)(L)2] reveal very different electronic properties for coordinated L1 and L2 which translate into the strikingly different performances of the complexes [RhCl(L)(cod)] (L= L1 or L2 , cod=1,5‐cyclooctadiene) in hydrosilylation and hydroboration catalysis.  相似文献   

8.
《化学:亚洲杂志》2017,12(21):2845-2856
The coordination chemistry of a priori weakly σ ‐donating nitroaromatic phosphines is addressed through a series of nitro‐substituted (N ‐phenyl‐benzimidazol‐1‐yl)diphenylphosphines in RhI complexes. From a set of seven such phosphines L=Lxyz(′) (x , y , z =0 or 1=number of NO2 substituents at the 5, 6 and N‐Ph para positions, respectively), including the non‐nitrated parent L000 and its dicationic N‐methyl counterpart L000′, three LRhCl(COD) and seven L2RhCl(CO) complexes have been obtained in 72–95 % yield. Despite of a cis orientation of the L and CO ligands, the C=O IR stretching frequency ν CO varies in the expected sense, from 1967±1 cm−1 for Lxy0 to 1978±1 cm−1 for Lxy1, and 2005 cm−1 for L000′. The 103Rh NMR chemical shift δ Rh varies from −288 ppm for L000 to −316±1 ppm for L10z or L01z, and −436 ppm for L000′. The ν CO and δ Rh probes thus reveal moderate but systematic variations, and act as “orthogonal” spectroscopic indicators of the presence of nitro groups on the N‐Ph group and the benzimidazole core, respectively. For the dicationic ligand L000′, a tight electrostatic sandwiching of the Rh‐Cl bond by the benzimidazole moities is evidenced by X‐ray crystallography (RhClδ ⋅⋅⋅CN2+ ≈3.01 Å). Along with the LRhCl(CO) complexes, dinuclear side‐products (μ‐CO)(RhClL)2 were also obtained in low spectroscopic yield: for the dinitro ligand L=L011, a unique 1:6.7 clathrate structure, with dichloromethane as solvate, is also revealed by X‐ray crystallography.  相似文献   

9.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

10.
PhotoCORMs (photo‐active CO‐releasing molecules) have emerged as a class of CO donors where the CO release process can be triggered upon illumination with light of appropriate wavelength. We have recently reported an Mn‐based photoCORM, namely [MnBr(pbt)(CO)3] [pbt is 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole], where the CO release event can be tracked within cellular milieu by virtue of the emergence of strong blue fluorescence. In pursuit of developing more such trackable photoCORMs, we report herein the syntheses and structural characterization of two MnI–carbonyl complexes, namely fac‐tricarbonylchlorido[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C12H8N2S)(CO)3], (1), and fac‐tricarbonylchlorido[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C16H10N2S)(CO)3], (2). In both complexes, the MnI center resides in a distorted octahedral coordination environment. Weak intermolecular C—H…Cl contacts in complex (1) and Cl…S contacts in complex (2) consolidate their extended structures. These complexes also exhibit CO release upon exposure to low‐power broadband visible light. The apparent CO release rates for the two complexes have been measured to compare their CO donating capacity. The fluorogenic 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole and 2‐(quinolin‐2‐yl)‐1,3‐benzothiazole ligands provide a convenient way to track the CO release event through the `turn‐ON' fluorescence which results upon de‐ligation of the ligands from their respective metal centers following CO photorelease.  相似文献   

11.
Salts containing bis‐phosphonio‐benzophospholide cations 2 a – d with an additional donor site in one of the phosphonio‐moieties were synthesized either via quaternisation of the Ph2P moiety in the neutral phosphonio‐benzophospholide 3 , or via ring‐closure of the functionalized bis‐phosphonium ion 6 . The Ph2P‐substituted cation 2 d formed chelate complexes [M(k2P,P′‐ 2 d )(CO)n]+ with M(CO)n = Ni(CO)2, Fe(CO)3, Cr(CO)4. In the latter case, competition between formation of the chelate and a complex [Cr(kP‐ 2 d )2(CO)4]2+ was observed, and interpreted as a consequence of antagonism between the stabilizing chelate effect and destabilizing ligand–ligand repulsions. The formation of stable PdII and PtII complexes of 2 d suggests that the chelate effect may also overcome the kinetic inhibition which so far prevented isolation of complexes of these metals with bis‐phosphonio‐benzophospholides. The newly synthesized ligands and complexes were characterized by spectroscopic data, and an X‐ray crystal structure analysis of 2 a [Br]. The reactivity of chelate complexes towards Ph3P indicates that the ring phosphorus atom is a weaker donor than the pendant Ph2P‐group.  相似文献   

12.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

13.
The ligand 1,3‐bis[3‐oxo‐3‐(2‐hydroxyphenyl)propionyl]benzene (H4L), designed to align transition metals into tetranuclear linear molecules, reacts with MII salts (M=Ni, Co, Cu) to yield complexes with the expected [MM???MM] topology. The novel complexes [Co4L2(py)6] ( 2 ; py=pyridine) and [Na(py)2][Cu4L2(py)4](ClO4) ( 3 ) have been crystallographically characterised. The metal sites in complexes 2 and 3 , together with previously characterised [Ni4L2(py)6] ( 1 ), favour different coordination geometries. These have been exploited for the deliberate synthesis of the heterometallic complex [Cu2Ni2L2(py)6] ( 4 ). Complexes 1 , 2 , 3 and 4 exhibit antiferromagnetic interactions between pairs of metals within each cluster, leading to S=0 spin ground states, except for the latter cluster, which features two quasi‐independent S=1/2 moieties within the molecule. Complex 4 gathers the structural and physical conditions, thus allowing it to be considered as prototype of a two‐qbit quantum gate.  相似文献   

14.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

15.
Four metal benzylalkoxides, [L2M2(μ‐OBn)2] (M = Mg or Zn), based on NNO‐tridentate ketiminate ligands are synthesized and characterized. X‐ray crystal structural studies of [(L1)2Mg2(μ‐OBn)2] ( 1a ) and [(L1)2Zn2(μ‐OBn)2] ( 1b ) (L1‐H = (Z)‐4‐((2‐(dimethylamino)ethylamino)(phenyl)methylene)‐3‐methyl‐1‐phenyl‐pyrazol‐5‐one) reveal that both complexes 1a and 1b are dinuclear species whereas the geometry around the metal center is penta‐coordinated bridging through the benzylalkoxy oxygen atoms in the solid structure. The activities and stereoselectivities of these four complexes toward the ring‐opening polymerization of L ‐lactide and rac‐lactide are investigated. Polymerization of L ‐lactide initiated by these four metal benzyloxides proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. The kinetic studies for the polymerization of L ‐lactide with compound 1a show first order in both compound 1a and lactide concentrations with the polymerization rate constant, k, of 6.94 M/min. Besides, experimental results demonstrate that among these metal benzylalkoxides, complex 1a exhibits the highest stereoselectivity with a Pr up to 87% and complex 1b possesses the highest activity indicating that the terminal group of NNO‐tridentate ketimine ligands exerts a significant influence on both the reactivity and stereoselectivity of these complexes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2318–2329, 2009  相似文献   

16.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

17.
Neutral binuclear ruthenium complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 of the general formula [{RuCl26p‐cym)}2 μ‐(NN)] (NN = bis(nicotinate)‐ and bis(isonicotinate)‐polyethylene glycol esters: (3‐py)COO(CH2CH2O)nCO(3‐py) and (4‐py)COO(CH2CH2O)nCO(4‐py), n =1–4), as well as mononuclear [RuCl26p‐cym)((3‐py)COO(CH2CH2OCH3)‐κN)], complex 9 , were synthesized and characterized using elemental analysis and electrospray ionization high‐resolution mass spectrometry, infrared, 1H NMR and 13C NMR spectroscopies. Stability of the binuclear complexes in the presence of dimethylsulfoxide was studied. Furthermore, formation of a cationic complex containing bridging pyridine‐based bidentate ligand was monitored using 1H NMR spectroscopy. Ligand precursors, polyethylene glycol esters of nicotinic ( L1 · 2HCl– L4 · 2HCl and L9 · HCl) and isonicotinic acid dihydrochlorides ( L5 · 2HCl– L8 · 2HCl), binuclear ruthenium(II) complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and mononuclear complex 9 were tested for in vitro cytotoxicity against 518A2 (melanoma), 8505C (anaplastic thyroid cancer), A253 (head and neck tumour), MCF‐7 (breast tumour) and SW480 (colon carcinoma) cell lines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Upon treating transition‐metal–dihaloboryl complexes of the form [LnMBX2] with K[(η5‐C5H5)MnH(CO)2], salt elimination occurs along with a migration of the Mn‐bound hydride ligand onto the boron atom, thereby forming dinuclear σ‐(halo)boranyl complexes of the form [LnM(μBHX)Mn(CO)25‐C5H5)]. Most of these complexes react further at room temperature to lose HX and provide metalloborylene complexes [LnM‐B=Mn(CO)25‐C5H5)]; however, when MLn=Re(CO)5 the σ‐(halo)boranyl complex decomposes into unidentifiable products. We found through DFT calculations that two electronically and structurally distinct forms of the intermediate σ‐(halo)boranyl complexes exist, one of which easily loses HX and one that does not.  相似文献   

19.
Syntheses of the array of heterobimetallic complexes [(OC)3M(μ‐PPh2)2(μ‐OC(CHMe(CH2)2PPh2)RhL], M = Cr, Mo, W, L = tBuNC, are described, extending the previous study of the counterpart array for L = CO. A single crystal X‐ray structure determination is reported for the M = Mo adduct, enabling comparison with its previously reported L = CO counterpart, for which an improved redetermination is also reported. In the present complex the tBuNC ligand is found to be much more weakly bound (Rh‐C 2.026(5) Å) than the carbonyl group it displaces (Rh‐C 1.945(2) Å) with concomitant minor impact on the remainder of the rhodium ambience.  相似文献   

20.
Three transition‐metal–carbonyl complexes [V( L )(CO)3(Cp)] ( 1 ), [Co( L )(CO)(Cp)] ( 2 ), and [Co( L2 )(CO)3]+[CoCO)4]? ( 3 ), each containing stable N‐heterocyclic‐chlorosilylene ligands ( L ; L =PhC(NtBu)2SiCl) were synthesized from [V(CO)4(Cp)], [Co(CO)2(Cp)], and Co2(CO)8, respectively. Complexes 1 , 2 , 3 were characterized by NMR and IR spectroscopy, EI‐MS spectrometry, and elemental analysis. The molecular structures of compounds 1 , 2 , 3 were determined by single‐crystal X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号