首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Eighteen trinuclear NiII2LnIII complexes of 2,6-di(acetoacetyl)pyridine (H2L) (Ln=La-Lu except for Pm) were prepared by a "one-pot reaction" of H2L, Ni(NO3)2.6H2O, and Ln(NO3)3.nH2O in methanol. X-ray crystallographic studies indicate that two L2- ligands sandwich two NiII ions with the terminal 1,3-diketonate sites and one LnIII ion with the central 2,6-diacylpyridine site, forming the trinuclear [Ni2Ln(L)2] core of a linear NiLnNi structure. The terminal Ni assumes a six-coordinate geometry together with methanol or water molecules, and the central Ln assumes a 10-coordinate geometry together with two or three nitrate ions. The [Ni2Ln(L)2] core is essentially coplanar for large Ln ions (La, Ce, Pr, Nd) but shows a distortion with respect to the two L2- ligands for smaller Ln ions. Magnetic studies for the Ni2Ln complexes of diamagnetic LaIII and LuIII indicate an antiferromagnetic interaction between the terminal NiII ions. A magnetic analysis of the Ni2Gd complex based on the isotropic Heisenberg model indicates a ferromagnetic interaction between the adjacent NiII and GdIII ions and an antiferromagnetic interaction between the terminal NiII ions. The magnetic properties of other Ni2Ln complexes were studied on the basis of a numerical approach with the Ni2La complex and analogous Zn2Ln complexes, and they indicated that the NiII-LnIII interaction is weakly antiferromagnetic for Ln=Ce, Pr, and Nd and ferromagnetic for Ln=Gd, Tb, Dy, Ho, and Er.  相似文献   

2.
A mesogenic Schiff-base, N,N′-di-(4-decyloxysalicylidene)-1′,3′-diaminobenzene, H2ddsdbz (abbreviated as H2L), that exhibits a nematic mesophase was synthesized and its structure was studied by elemental analysis, mass spectrometry, NMR, and IR spectral techniques. The Schiff-base, H2L, upon condensation with hydrated lanthanide(III) nitrates yields LnIII complexes, [Ln2(LH2)3(NO3)4](NO3)2, where Ln?=?La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho. Analyses of the IR and NMR spectral data imply bidentate Schiff-base through two phenolate oxygen atoms in its zwitterionic form to LnIII, rendering the overall geometry of the complexes as a seven-coordinate polyhedron – possibly distorted mono-capped octahedron. Polarizing optical microscope and differential scanning calorimetry studies reveal that despite H2L being mesogenic, none of the LnIII complexes synthesized under this study exhibits mesomorphism.  相似文献   

3.
三角架型配体由于其独特的配位方式而具有许多优良的物理和化学性质 ,如能稳定高氧化态的过渡金属离子[1 3] ,用作优良的电极活性物质[4] ,具有生物活性[5] 等 .因此近十余年来对该类配合物的研究一直是配位化学研究领域的一个重要部分 .但到目前为止 ,对具有三角架结构的三酰胺型开链冠醚的研究却很少 ,且主要集中于研究它与过渡金属和碱金属离子的相互作用及其性质[4,5] ,有关该类配体与稀土离子的配位形式及性质的研究则更少[6] .为了进一步研究该类配体与稀土离子的配位能力及所形成配合物的性质 ,我们参照文献 [5]方法 ,合成出配体 1 ,…  相似文献   

4.
Trinuclear lanthanide complexes of the formula [Ln(3)(PPDA)(NO(3))(6)(H(2)O)(2)].NO(3).2H(2)O where Ln=La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H(2)PPDA=N,N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.  相似文献   

5.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

6.
在乙醇体系中,由主配体4-[(1,3-二氧代丁基)氨基]苯甲酸(H2L,C11H11NO4)、稀土硝酸盐及辅助配体邻菲啰啉(phen)反应合成了两个系列8个配合物[Ln2(L)3(H2O)4]n(Ln=Sm(1),Eu(2),Tb(3),Dy(4));[Ln2(NO3)2(L)2(phen)2]n(Ln=Sm(5),Eu(6),Tb(7),Dy(8))。用元素分析、红外光谱、摩尔电导、热重分析进行表征,确定了产物的化学组成,推断了相应的结构。测定了室温时固体产物的激发和发射光谱,结果表明:由主辅配体共同配位的三元配合物的发光强度好于无辅助配体参与的二元配合物。测定了三元配合物的荧光寿命,其中铕和铽配合物显示较长的荧光寿命。  相似文献   

7.
A new ligand, N,N'-di(pyridine N-oxide-2-yl)pyridine-2,6-dicarboxamide (LH2) and its several lanthanide (III) complexes (La, Eu, Gd, Tb, Y) were synthesized and characterized in detail based on elemental analysis, conductivity measurements, IR, 1H NMR, MS (FAB) and UV spectra and TG-DTA studies. The results indicated that the composition of these binary complexes is [Ln(LH2)(NO3)2.H2O]NO3.nH2O (n=0-1); while the ligand has a good planar structure with strong hydrogen bonds. The fluorescence spectra exhibits that the Tb (III) complex and the Eu (III) complex display characteristic metal-centered fluorescence in solid state while ligand fluorescence is completely quenched. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectivity in transferring energy from the lowest triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D1) of Eu (III).  相似文献   

8.
The synthesis and characterization of lanthanide(III) complexes with the Schiff-base hydrazone, o-hydroxyacetophenone-7-chloro-4-quinoline, (HL) are reported. The complexes were characterized by different physicochemical methods: mass spectrometry, 1H NMR, 13C NMR, and IR, UV-visible, molar conductance and magnetic studies. They have the stoichiometry [Ln(L)2(NO3)]·nH2O where Ln = La(III), Pr(III), Nd(II), Sm(III), Eu(III) and n = 1–3. The spectra of the complexes were interpreted by comparison with the spectrum of the free ligand. The Schiff-base ligand and its metal complexes were tested against one stain Gram +ve bacteria (Staphylococcus aureus), Gram ?ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited high antimicrobial activities  相似文献   

9.
Lanthanide(III) complexes of the general formula [Ln(ACAB)(2)(NO(3))(2)(H(2)O)(2)].NO(3).H(2)O where Ln=La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III) and Y(III), ACAB=3-acetylcoumarin-o-aminobenzoylhydrazone have been isolated and characterised based on elemental analyses, molar conductance, IR, (1)H- and (13)C-NMR, UV, TG/DTA and EPR spectral studies. The ligand behaves in bidentate fashion coordinating through hydrazide >C=O and nitrogen of >C=N. A coordination number of ten is assigned to the complexes. Antibacterial and Antifungal studies indicate an enhancement of activity of the ligand on complexation.  相似文献   

10.
Nickel(II) complexes of the general composition Ni(L)X(2) (where X=SCN, NO(3) and 1/2SO(4) and ligands=L(1) L(2) and L(3)) have been synthesized and characterized by elemental analyses, magnetic moments, IR, (1)H NMR, (13)C NMR and electronic spectral studies. Nickel(II) ions, such as nitrates, thiocyantes and sulphates were found to act as templates for the cyclic condensations [1+1] and [2+2] of NH(2--)C(6)H(4)--O--CH(2)--CH(2)--O--C(6)H(4)--NH(2), NH(2)--(CH(2))(2)--NH(2) and NH(2)--CH(CH(3))--CH(2)--NH(2) with C(6)H(5)--CO--CO--C(6)H(5), C(6)H(5)--CO--CH(2)--CO--C(6)H(5) and (COOH--CH(2)--CH(2))(2)S. All the complexes show magnetic moments corresponding to two unpaired electrons except [Ni(L(1))](NO(3))(2) and [Ni(L(2))](NO(3))(2) complexes which are diamagnetic. Electronic spectroscopy was used to analyse the differences between the paramagnetic and diamagnetic forms. Electrochemical properties have been studied extensively for Ni(III/II) and Ni(II/I) couples. The equilibrium between the paramagnetic and diamagnetic forms and the nickel(III/II) couple are strongly dependent on the electrolyte. It has been observed that the sulphate group coordinated selectively on the apical position of the nickel(II) centers of the compounds. The structural and electrochemical studies suggest that cooperative effects, involving coordination of sulphate to one nickel center, is responsible for the recognition of this anion. Various ligand field parameters have been calculated and discussed.  相似文献   

11.
The enantiopure amine macrocycle H(3)L, as well as the parent macrocyclic Schiff base H(3)L1, the 3 + 3 condensation product of (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol, are able to form mononuclear complexes with lanthanide(III) ions. The lanthanide(III) complexes of H(3)L have been studied in solution using NMR spectroscopy and electrospray mass spectrometry. The NMR spectra indicate the presence of complexes of low C(1) and C(2) symmetry. The (1)H and (13)C NMR signals of the Lu(III) complex obtained from H(3)L have been assigned on the basis of COSY, TOCSY, NOESY, ROESY and HMQC spectra. The NMR data reveal unsymmetrical binding of lanthanide(III) ion and the presence of a dynamic process corresponding to rotation of Lu(III) within the macrocycle. The [Ln(H(4)L)(NO(3))(2)](NO(3))(2)(Ln = Sm(III), Eu(III), Dy(III), Yb(III) and Lu(III)) complexes of the cationic ligand H(4)L(+) have been isolated in pure form. The X-ray analysis of the [Eu(H(4)L)(NO(3))(2)](NO(3))(2) complex confirms the coordination mode of the macrocycle determined on the basis of NMR results. In this complex the europium(III) ion is bound to three phenolate oxygen atoms and two amine nitrogen atoms of the monoprotonated macrocycle H(4)L(+), as well as to two axial bidendate nitrate anions. In the presence of a base, mononuclear La(III), Ce(III) and Pr(III) complexes of the deprotonated form of the ligand L(3-) can be obtained. When 2 equivalents of Pr(III) are used in this synthesis Na(3)[Pr(2)L(NO(3))(2)(OH)(2)](2)NO(3).5H(2)O is obtained. The NMR, ES MS and an X-ray crystal model of this complex show coordination of two Pr(III) ions by the macrocycle L. The X-ray crystal structure of the free macrocycle H(3)L1 has also been determined. In contrast to macrocyclic amine H(3)L, the Schiff base H(3)L1 adopts a cone-type conformation resembling calixarenes.  相似文献   

12.
Some new organotin(IV) complexes with salicylaldehyde aniline-N-thiohydrazone (L1) and cinamaldehyde aniline-N-thiohydrazone (L2) of the type (p-ClC6H4)3Sn[L] Cl and (p-ClC6H4)2Sn[L]Cl2 have been synthesized (where L = L1 and L2). The complexes and ligands were characterized by elemental analysis and spectral (UV-vis, IR and 1H NMR) studies. In all the complexes, ligands act as bidentate, coordination through sulphur and azomethane nitrogen. Complexes are 1:1 metal ligands complexes. Antifungal studies of some complexes against Rhizoctonia bataticola fungal strain have been carried out.  相似文献   

13.
本文合成2,4-二羟基苯甲醛缩邻氨基苯甲酸Schiff碱(H~3L),以改进的合成方法得到此配体与镧系元素形成的九种新配合物.经分析确定其组成[Ln(H~2L)~2NO~3],(Ln=La、Pr、Nd、Sm、Gd、Dy、Ho、Er、Yb.以热重-差执分析、紫外、红外光谱以及核磁共振谱等表征,证明Schiff碱具有稳定的分子内氢键并以三卤形式同镧系离子形成稳定的共轭双六元螯合环.经研究表明,此系列配合物对甲基丙烯酸甲酯的聚合有明显的催化活性.  相似文献   

14.
New copper(II) complexes of indoxyl thiosemicarbazone (ITSC) of general composition CuL2X2 (where L: ITSC; X: Cl-, NO3-, ClO4-, NCS-) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR, Mass) studies. Cyclic voltammetry measurements show quasi-reversible Cu2+/Cu1+ couple. Various physico-chemical techniques suggest a tetragonal structure for these copper(II) complexes.  相似文献   

15.
We report the syntheses and crystal structures of (NH4)11[Ln(III)(PMo11O39)2.xH2O (where Ln = every trivalent lanthanide cation except promethium) in which two lacunary [PMo11O39]7- anions sandwich an 8-coordinate Ln(III) cation to yield the complex anion, [LnIII(PMo11O39)2]11-. The 14 salts crystallise in two different space groups, C2/c or P1, but the LnIII containing anions are isostructural across the whole series, a very rare example of such a complete study. Solid state and solution 31P NMR, Raman and IR spectroscopies have been used to prove the stability of [Ln(PMo11O39)2]11- in aqueous solution. As expected, the LnIII cation contracts across the series and the Ln-O bond distances decrease uniformly. Interestingly, the splitting in the nu(P-O) mode within the [PMo11O39]7- unit increases uniformly across the series, which we attribute to the stronger interaction with the smaller, higher charge density LnIII cation as the series is traversed. For the 31P NMR measurements a direct comparison of Lanthanide Induced (paramagnetic) Shift could be made with the analogous [P(W11O39)2]11- complexes.  相似文献   

16.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

17.
合成了十五种新的3,6-二(二甲氨基)-二苯并碘六环稀土二柠檬酸配合物, 其化学式为: [C17H20N2I]3[RE(C6H5O7)2].xH2O(RE=La-Nd, x=5; Sm-Tb, x=4; Dy-Lu, Y,x=3). 利用X射线粉末衍射、热重-差热, 红外光谱、紫外光谱、摩尔电导等对这些配合物进行了表征. 试验表明, 镧配合物对L7712癌细胞DNA合成的抑制率(97.3%)明显高于其前体(C17H20N2I^+.HCOO^-, 72.5%; Na3[La(C6H5O7)2], -16.5%.  相似文献   

18.
Nickel(II) and copper(II) complexes are synthesized with a novel tetradentate macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetraphenyltricyclo[15,3,1,1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) and characterized by the elemental analysis, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic and EPR spectral studies. All the complexes are non-electrolytic in nature. Thus, these may be formulated as [M(L)X(2)] [M=Ni(II), Cu(II) and X=Cl(-), NO(3)(-) and (1/2)SO(4)(2-)]. Ni(II) and Cu(II) complexes show magnetic moments corresponding to two and one unpaired electron, respectively. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Ni(II) and tetragonal geometry for Cu(II) complexes.  相似文献   

19.
A synthetic method for a new unsymmetrical Schiff base and its Ln (III) complexes including multi C == N- groups is reported. The complexes are characterized by elemental analysis, IR spectra, 1H and 13C NMR, especially 2D-COSY1H, 1H NMR spectra. The general formula of the obtained complexes is [Ln3(TBLY)(NO3)3]@nH2O (Ln = La, n = 3; Ln = Nd, n = 5; Ln = Gd, Dy, Yb, Y, n = 7), whereTBLY = tetraglycol aldehyde-2,4-dihydroxy benzaldehyde bis-lysine Schiff base. In addition, the evidence for existence of C == CH-NH- group is supported bythe AM1 method. The complexes obtained may be used as a catalyst. Conversion rate of 80% with the viscosity-average molecular weight 220000 for the polymerization of methyl methacrylate (MMA) without addition of any cocatalyst has been obtained.  相似文献   

20.
Eight new lanthanide metal complexes [LnL(NO(3))(2)]NO(3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ((1)H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号