首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The suitability of an integrated optical chemical sensor for the determination of highly volatile chlorinated hydrocarbons in aqueous solutions has been proven. The analytes are detected by NIR absorption spectrometry in the evanescent field of an integrated optical strip waveguide generated in a BGG31 (Schott, Germany) glass substrate, which is coated with a hydrophobic polymer superstrate as sensing layer. It has been shown that the sensitivity increases when the refractive index of the superstrate is increased from 1.333 up to 1.46. Different UV-cured polysiloxanes with low cross sensitivity to water have been prepared. Due to the good light transmission properties of the IO-sensors prepared by this method, quantitative measurements have been performed with the model system trichloroethene (TCE) in water. A detection limit of 22 ppm has been found and the sensor response times (t(90)-value) are between five and fourteen minutes for a coating thickness of around 30 microm. The sensor response is totally reversible. The analyte desorbes in air within 2 min. The enrichment of trichloroethene in the polysiloxane coating can be described by film diffusion through the aqueous boundary layer as rate determining step.  相似文献   

2.
A new, long-path integrated optical (IO) sensor for the detection of non-polar organic substances is described. The sensing layer deposited on a planar multimode IO structure is built by a suitable silicone polymer with lower refractive index (RI). It acts as a hydrophobic matrix for the reversible enrichment of non-polar organic contaminants from water or air. Light from the near-infrared (NIR) range is coupled into the planar structure and the evanescent wave part of the light field penetrating into the silicone layer interacts with the enriched organic species. As a result, light is absorbed at the characteristic frequencies of the corresponding C-H, N-H or O-H overtone and combination band vibrations of the analytes. To perform evanescent field absorbance (EFA) measurements, the arc-shaped strip waveguide structure of 172 mm interaction length was adapted to a tungsten-halogen lamp and an InGaAs diode array spectrograph over gradient index fibers. Dimethyl-co-methly(phenyl)polysiloxanes with varying degrees of phenylation were prepared and used as sensitive coating materials for the IO structure. Light attenuation in the arc-shaped waveguides is high and typical insertion losses in the range of 14–18 dB were obtained. When the coated sensors were brought in contact with aqueous samples, the light transmission decreases, which is due to the formation of H2O micro-emulsions in the silicone superstrates. Nevertheless, after reaching constant light transmissions, absorbance spectra of aqueous trichloroethene samples were successfully collected. For gas measurements, where water cross sensitivity problems are absent, the sensitivity of the IO device for trichloroethene was tested as a function of the RI of the silicone superstrate. The slope of the TCE calibration function increases by a factor of 10 by using a poly(methylphenylsiloxane) layer with a RI of 1.449 instead of poly(dimethylsiloxane) (RI: 1.41). A comparison of the IO-EFA and an earlier developed fiber-optic EFA sensor for trichloroethene measurements in the gas phase showed an increase in sensitivity per unit length of the waveguide by a factor of up to 120.  相似文献   

3.
A new, long-path integrated optical (IO) sensor for the detection of non-polar organic substances is described. The sensing layer deposited on a planar multimode IO structure is built by a suitable silicone polymer with lower refractive index (RI). It acts as a hydrophobic matrix for the reversible enrichment of non-polar organic contaminants from water or air. Light from the near-infrared (NIR) range is coupled into the planar structure and the evanescent wave part of the light field penetrating into the silicone layer interacts with the enriched organic species. As a result, light is absorbed at the characteristic frequencies of the corresponding C-H, N-H or O-H overtone and combination band vibrations of the analytes. To perform evanescent field absorbance (EFA) measurements, the arc-shaped strip waveguide structure of 172 mm interaction length was adapted to a tungsten-halogen lamp and an InGaAs diode array spectrograph over gradient index fibers. Dimethyl-co-methly(phenyl)polysiloxanes with varying degrees of phenylation were prepared and used as sensitive coating materials for the IO structure. Light attenuation in the arc-shaped waveguides is high and typical insertion losses in the range of 14-18 dB were obtained. When the coated sensors were brought in contact with aqueous samples, the light transmission decreases, which is due to the formation of H(2)O micro-emulsions in the silicone superstrates. Nevertheless, after reaching constant light transmissions, absorbance spectra of aqueous trichloroethene samples were successfully collected. For gas measurements, where water cross sensitivity problems are absent, the sensitivity of the IO device for trichloroethene was tested as a function of the RI of the silicone superstrate. The slope of the TCE calibration function increases by a factor of 10 by using a poly(methylphenylsiloxane) layer with a RI of 1.449 instead of poly(dimethylsiloxane) (RI: 1.41). A comparison of the IO-EFA and an earlier developed fiber-optic EFA sensor for trichloroethene measurements in the gas phase showed an increase in sensitivity per unit length of the waveguide by a factor of up to 120.  相似文献   

4.
We have prepared a novel fiber-optic evanescent wave sensor (FEWS) for dissolved oxygen (DO) detection. The sensor fabrication was based on coating a decladded portion of an optical fiber with a microporous coating, which was prepared from 3,3,3-trifluoropropyltrimethoxysilane and n-propyltrimethoxysilane. The fluorophores were immobilized in the porous coating and excited by the evanescent wave field produced on the core surface of the optical fiber. The sensitivity of the sensor was quantified by the ratio of the fluorescence intensities in pure deoxygenated (I 0) and in pure oxygenated environments (I). Results show that the quenching response of DO is increased with the enhancement of the coating surface hydrophobicity using the presented hybrid fluorinated ORMOSILs. The calibration curve of I 0/I to [O2] is linear from 0 to 40 ppm and the detection limit is 0.05 ppm (3σ) with a short response time of 15 s for DO detection. Figure    相似文献   

5.
A novel optical sensor has been proposed for sensitive determination of Cu(II) ion in aqueous solutions. The copper sensing membrane was prepared by incorporating Qsal (2-(2-hydroxyphenyl)-3H-anthra[2,1-d]imidazole-6,11-dione) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to Cu(II) ion by changing color reversibly from yellow to dark red in acetate buffer solution at pH 4.0. The proposed sensor displays a linear range of 6.3 × 10?7?1.00 × 10?4 M with a limit of detection of 3.3 × 10?7 M. The response time of the optical sensor was about 3?C5 min, depending on the concentration of Cu(II) ions. The selectivity of the optical sensor to Cu(II) ions in acetate buffer is good. The sensor can readily be regenerated by hydrochloric acid (0.1 M). The optical sensor is fully reversible. The proposed optical sensor was applied to the determination of Cu(II) in environmental water samples.  相似文献   

6.
A new optical sensor is presented, based on the analyte reaction resulting in swelling and shrinking of a thin polymer layer. Changing the concentration of ions in a new bisazide photo-cross-linked poly(vinylpyrrolidone) polymer results in a concentration-dependent volume change of the hydrated gel. The volume response of the sensor induced by different ions is fully reversible over more than 250 cycles. The response of the device depends on the type, the charge and the concentration of the ions. The sensor material is part of an optical thin film system which transforms the variations in volume of the polymer into spectral information. The steady state of the sensor response is obtained within 60 s. The response time is mainly limited by the pump rate, the back pressure and the total volume of the system but not by the swelling of the sensor polymer. A comparative study of ion effects has demonstrated a fundamental correlation of the polymer swelling properties with the Hofmeister series of chaotropic agents. Thus it is concluded that the photopolymer, which is solubilized in aqueous solutions by the interaction of its amide structure with the solvent, behaves like the backbone amide structure of proteins.  相似文献   

7.
An attenuated total reflection (ATR) sensor for water-miscible organic solvents was constructed using a combination of sol-gel processing and integrated optical waveguide (IOW) technologies. The sensor consisted of single-mode, sol-gel based planar waveguide coated with a 40 nm thick, porous sol-gel indicator layer prepared from methyltriethoxysilane and doped with methyl red. The response of the senor to aqueous isopropyl alcohol (IPA) was investigated. Solvation of the indicator dye by IPA causes the absorbance spectrum to undergo a blue shift coupled with an increase in molar absorptivity. IPA was detected by measuring changes in ATR of the guided mode at 488 nm. A response curve extending from 1 to 100% (v/v) IPA in water was constructed for the sensor, from which a detection limit of 0.7% (v/v) IPA/water was estimated. Response and reversal times were typically less than one minute, making this sensor potentially attractive for on-line monitoring applications. The rapid response characteristics are attributable to relatively weak, reversible interactions between the indicator and analyte.  相似文献   

8.
本文用离子交换法制备K+交换玻璃光波导元件,并在其表面固定纳米级敏感层酞菁铜(CuPc)薄膜,利用光波导气体检测系统对NO2气体进行测试.结果表明,该传感元件常温下对NO2等气体有快速、可逆的响应,并具有重现性好,灵敏度高等特点.  相似文献   

9.
Based on the modulated electronic properties of Fe3O4-graphene (Fe3O4/GN composite) as well as the outstanding complexation between Pb2+ and natural substances garlic extract (GE), a novel electrochemical sensor for the determination of Pb2+ in wastewater was prepared by immobilization of Fe3O4/GN composite integrated with GE onto the surface of glassy carbon electrode (GCE). Fe3O4/GN composite was employed as an electrochemical active probe for enhancing electrical response by facilitating charge transfer while GE was used to improve the selectivity and sensitivity of the proposed sensor to Pb2+ assay. The electrochemical sensing performance toward Pb2+ was appraised by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV). Under the optimized condition, the sensor exhibited two dynamic linear ranges (LDR) including 0.001 to 0.5 nM and 0.5 to 1000 nM with excellent low detection limit (LOD) of 0.0123 pM (S/N =?3) and quantification limit (LOQ) of 0.41 pM (S/N =?10). Meanwhile, it displayed remarkable stability, reproducibility (RSD of 3.61%, n =?3), and selectivity toward the assay for the 100-fold higher concentration of other heavy metal ions. Furthermore, the novel sensor has been successfully employed to detect Pb2+ from real water samples with satisfactory results.  相似文献   

10.
Ultrathin gold films prepared by evaporation of sub-percolation layers (typically up to 10 nm nominal thickness) onto transparent substrates form arrays of well-defined metal islands. Such films display a characteristic surface plasmon (SP) absorption band, conveniently measured by transmission spectroscopy. The SP band intensity and position are sensitive to the film morphology (island shape and inter-island separation) and the effective dielectric constant of the surrounding medium. The latter has been exploited for chemical and biological sensing in the transmission localized surface plasmon resonance (T-LSPR) mode. A major concern in the development of T-LSPR sensors based on Au island films is instability, manifested as change in the SP absorbance following immersion in organic solvents and aqueous solutions. The latter may present a problem in the use of Au island-based transducers for biological sensing, usually carried out in aqueous media. Here, we describe a facile method for stabilizing Au island films while maintaining a high sensitivity of the SP absorbance to analyte binding. Stabilization is achieved by coating the Au islands with an ultrathin silica layer, ca. 1.5 nm thick, deposited by a sol-gel procedure on an intermediate mercaptosilane monolayer. The silica coating is prepared using a modified literature procedure, where a change in the reaction conditions from room temperature to 90 degrees C shortened the deposition time from days to hours. The system was characterized by UV-vis spectroscopy, ellipsometry, XPS, HRSEM, AFM, and cyclic voltammetry. The ultrathin silica coating stabilizes the optical properties of the Au island films toward immersion in water, phosphate buffer saline (PBS), and various organic solvents, thus providing proper conditions where the optical response is sensitive only to changes in the effective dielectric constant of the immediate environment. The silica layer is thin enough to afford high T-LSPR sensitivity, while the hydroxyl groups on its surface enable chemical modification for binding of receptor molecules. The use of silica-encapsulated Au island films as a stable and effective platform for T-LSPR sensing is demonstrated.  相似文献   

11.
An NH -ISFET sensor based on PVC membrane technology with improved long-term stability has been developed. As a new approach, the plasticizer (tetra-n-undecyl) 3,3′,4,4′ -benzhydroltetracarboxylate (ETH2112) was used in membrane preparation. Its lipophilic nature provides a restricted diffusion of the membrane components to the external solution and improves membrane adhesion to the gate area of the ISFET. The good performance of this plasticizer was confirmed by comparison with usual plasticizers applied in standard ISE technology. Moreover, the durability and stability of the sensor were enhanced by the application of a graphite-epoxy layer as an internal reference between the gate area and the PVC membrane. This composite layer permits the reduction of the optical sensitivity and improves the adherence of the PVC membrane to the ISFET surface. Furthermore, this composite layer acts as a plug, preventing the entrance of water upon the encapsulant-chip interface, thus protecting electrical connections from moisture. As a result, an NH -ISFET with a long-term stability of three months and a sensitivity of −58.7 ± 2.3 mV decade−1 in a linear range of 10−5 −0.1 mol dm−3 has been developed. The application of this sensor to a continuous-flow system has confirmed the feasibility of the technological approach proposed.  相似文献   

12.
In GaAs based infrared detectors, a considerable part of the incident light will be reflected at the surface, thus it decreases the detectors sensitivity considerably. In this paper, a TiO2 nanoporous coating was prepared successfully on the GaAs substrate by sol-gel method. The optical parameters of the coating were also controlled successfully. It was proved that the coating could greatly improve the transmittance of the incident light, which agrees with the theoretical results quite well. In the 2.5–6.0 m waveband, the maximum transmittance of GaAs substrate is 56%, while the transmittance of the GaAs substrate coated with a nanostructured TiO2 coating is about 94%.  相似文献   

13.
An optical waveguiding sensor array featuring monolithically integrated organic photodiodes as integrated photo-detector, which simplifies the readout system by minimizing the required parts, is presented. The necessity of any optical filters becomes redundant due to the proposed platform geometry, which discriminates between excitation light and sensing signal. The sensor array is capable of measuring luminescence or absorption, and both sensing geometries are based on the identical substrate. It is demonstrated that background light is virtually non-existent. All sensing and waveguide layers, as well as in- and out-coupling elements are assembled by conventional screen-printing techniques. Organic photodiodes are integrated by layer-by-layer vacuum deposition onto glass or common polymer foils. The universal and simple applicability of this sensor chip is demonstrated by sensing schemes for four different analytes. Relative humidity, oxygen, and carbon dioxide are measured in gas phase using luminescence-based sensor schemes; the latter two analytes are also measured by absorbance-based sensor schemes. Furthermore, oxygen and pH in aqueous media were enabled. The consistency of calibration characteristics extending over different sensor chips is verified.
Figure
Integrated fluorescence (left) and absorbance (right) based sensor waveguide  相似文献   

14.
Shuttle-like Fe2O3 nanoparticles (NPs) were prepared by microwave-assisted synthesis and characterized by scanning electron microscopy and X-ray diffraction. The NPs were immobilized on a glassy carbon electrode and then covered with dsDNA. The resulting electrode gives a pair of well-defined redox peaks for Pb(II) at pH 6.0, with anodic and cathodic peak potentials occurring at ?0.50?V and ?0.75?V (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.12 to 40?nM, and the detection limit is 0.1?nM at a signal-to-noise ratio of 3. The sensor exhibits high selectivity and reproducibility.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by dropping Fe2O3 NPs and double-strand DNA onto the pretreated glassy carbon electrode. The sensor had high sensitivety, high sensitivity, ease of construction and utilization for Pb(II) determination.  相似文献   

15.
Crosslinked hydrophilic polymers of different chemical structures can be used as sensor coatings for the detection of gaseous analytes. If their crosslink density is low, these materials behave in aqueous media as soft hydrogels with high swelling capacity. From a physico-mechanical standpoint, they are amorphous rubber-like materials, with high flexibility of their macromolecular chains. This property is particularly significant in view of applications in the sensors field, because it favours diffusion of the analyte molecules through the coating layer. This paper deals with the application of poly(ethylene glycols) (PEG)- and poly(N-vinylpyrrolidinone) (PVP)-based crosslinked resins as relative humidity (RH) sorbing materials, and of a poly(amidoamine)(PAA)-based resin as SO2-sorbing material. The electronic devices used for evaluating the sorption capability of these polymeric coatings were gravimetric resonant sensors. Resins of various crosslink density, and therefore of various swelling ratios in water, were purposely prepared and characterized. Thin coating, layers, prepared by casting from dilute aqueous suspensions of the resins, previously micronized in water, were used for sorption experiments. All experiments were performed in controlled RH and temperature environments.  相似文献   

16.
The CEA/DAM megajoule-class pulsed Nd:glass laser devoted to Inertial Confinement Fusion (ICF) research will require 240 cavity-end mirrors. The approved laser design necessitates 42-cm × 46-cm × 9-cm highly-reflective (HR)-coated substrates representing more than 50 m2 of coated area. Prototypes of these dielectric mirrors were prepared with interference quaterwave stacks of SiO2 and ZrO2-PVP (PolyVinylPyrrolidone) thin films starting from sol-gel colloidal suspensions (sols). Low refractive index material was based on nanosized silica particles and high refractive index coating solution was made of a composite system. The colloidal/polymeric ratio in the composite system has been optimized regarding refractive index value, laser damage threshold and chemical interactions have been studied using FT-IR spectroscopy. A deposition technique so-called Laminar Flow Coating (LFC) has been associated to sol-gel chemistry for HR laser damage-resistant sol-gel coating development. This novel coating method confirmed its main advantages compared to dipping or spinning processes: coating large flat square substrates at room temperature with small solution consumption, good thickness uniformity, weak edge-effects, induced stress-free coating, good optical properties and laser damage resistance fulfilling.  相似文献   

17.
In this paper, zinc oxide (ZnO) thin film sensor has been fabricated using different sol–gel spin coating route to detect very low concentration (2?ppm) of ethanol vapors at room temperature (RT). The sensor shows appreciable response ~60% for 100?ppm of ethanol (C2H5OH) vapors at RT under humidity level ~55% RH. Various sensing parameters viz. % response, selectivity, stability, response/recovery time, repeatability, and reproducibility have been studied successfully. Structural and morphological properties have been studied via X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD reveals the wurtzite structure of polycrystalline ZnO thin film. AFM, SEM, and TEM results confirm the wavy structure of well-shaped and slackly distributed ZnO nanograins with average particle size in range ~15–25?nm. The analyte sensing properties at room temperature can be ascribed to higher specific surface area due to nanograins formation. The significant effect of operating temperature on sensor’s performance is also analysed in order to obtain the optimum temperature (Topt) of the sensor device. Response reaches to 321.7% for 100?ppm of ethanol vapors at Topt (175?°C). The transformation in the behavior of sensing layer is observed which is described on the basis of experimental studies.  相似文献   

18.
This paper describes a reliable and sensitive method for sensing dissolved acetone using doped nanomaterials. Large-scale synthesis of ZnO nanorods (NRs) doped with Co3O4 was accomplished by a solvothermal method at low temperature. The doped NRs were characterized in terms of their morphological, structural, and optical properties by using field-emission scanning electron microscopy coupled with energy-dispersive system, UV-Vis., Fourier transform IR, X-ray diffraction, and Xray photoelectron spectroscopy. The calcinated (at 400 °C) doped NRs are shown to be an attractive semiconductor nanomaterial for detecting acetone in aqueous solution using silver electrodes. The sensor exhibits excellent sensitivity, stability and reproducibility. The calibration plot is linear over a large concentration range (66.8 μM to 0.133 mM), displays high sensitivity (~3.58 μA cm?2 mM?1) and a low detection limit (~14.7?±?0.2 μM; at SNR of 3).
Figure
The present study describes a simple, reliable, accurate, sensitive, and cost effective method for the detection of acetone using solvothermally prepared semiconductor co-doped nanomaterials.  相似文献   

19.
Changes to the fundamental and analytical parameters of a plasma have been investigated when ethanol has been added to aqueous or organic solutions. Excitation temperature, electron number density, and intensity of the H line increased when ethanol has been added to aqueous solutions, while an electron density decrease and signal reduction have been found when ethanol has been added to xylene. The sensitivity has been improved for all ethanol concentrations when water has been the solvent, but the reverse has been found for xylene solutions.  相似文献   

20.
We have developed a highly sensitive and selective sensor for lead(II) ions. A glassy carbon electrode was modified with Fe3O4 nanospheres and multi-walled carbon nanotubes, and this material was characterized by scanning electron microscopy and X-ray diffraction. The electrode displays good electrochemical activity toward Pb(II) and gives anodic and cathodic peaks with potentials at ?496 mV and ?638 mV (vs. Ag/AgCl) in pH?6.0 solution. The sensor exhibits a sensitive and fairly selective response to Pb(II) ion, with a linear range between 20 pM and 1.6 nM, and a detection limit as low as 6.0 pM (at a signal-to noise ratio of 3). The sensor was successfully applied to monitor Pb(II) in spiked water samples.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by modifying Fe3O4 nanospheres and multi-walled carbon nanotubes onto the pretreated glassy carbon electrode. The electrode displays good electrochemical activity toward Pb(II). And a low detection limit of 6.0 pM, high sensitivity, good reproducibility and stability provide the Fe3O4/MWCNTs/GCE a definite candidate for monitoring lead ion in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号