首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Oxidative Heck coupling of thiazole-4-carboxylates via palladium(II)-catalyzed C-H bond activation has been achieved in moderate to good yields. No ligand, and no acidic additive were used in the reaction. The results showed that this protocol tolerated a series of substitutions on the thiazole ring. A preliminary attempt of direct arylation with p-xylene via Pd(II)-catalyzed C-H bond activation has also been done.  相似文献   

2.
A systematic theoretical study is carried out on the mechanism for Pd(II)-catalyzed oxidative cross-coupling between electron-deficient arenes and alkenes. Two types of reaction pathways involving either a sequence of initial arene C-H activation followed by alkene activation, or the reverse sequence of initial alkene C-H activation followed by arene activation are evaluated. Several types of C-H activation mechanisms are discussed including oxidative addition, σ-bond metathesis, concerted metalation/deprotonation, and Heck-type alkene insertion. It is proposed that the most favored reaction pathway should involve an initial concerted metalation/deprotonation step for arene C-H activation by (L)Pd(OAc)(2) (L denotes pyridine type ancillary ligand) to generate a (L)(HOAc)Pd(II)-aryl intermediate, followed by substitution of the ancillary pyridine ligand by alkene substrate and direct insertion of alkene double bond into Pd(II)-aryl bond. The rate- and regio-determining step of the catalytic cycle is concerted metalation/deprotonation of arene C-H bond featuring a six-membered ring transition state. Other mechanism alternatives possess much higher activation barriers, and thus are kinetically less competitive. Possible competing homocoupling pathways have also been shown to be kinetically unfavorable. On the basis of the proposed reaction pathway, the regioselectivity predicted for a number of monosubstituted benzenes is in excellent agreement with experimental observations, thus, lending further support for our proposed mechanism. Additionally, the origins of the regioselectivity of C-H bond activation is elucidated to be caused by a major steric repulsion effect of the ancillary pyridine type ligand with ligands on palladium center and a minor electronic effect of the preinstalled substituent on the benzene ring on the cleaving C-H bond. This would finally lead to the formation of a mixture of meta and para C-H activation products with meta products dominating while no ortho products were detected. Finally, the multiple roles of the ancillary pyridine type ligand have been discussed. These insights are valuable for our understanding and further development of more efficient and selective transition metal-catalyzed oxidative C-H/C-H coupling reactions.  相似文献   

3.
DFT(B3PW91) calculations of the mechanism of the intramolecular C(sp(3))-H arylation of 2-bromo-tert-butylbenzene to form benzocyclobutene catalysed by Pd(PR(3)) (R = Me, (t)Bu) and a base (acetate, bicarbonate, carbonate) show that the preferred mechanism is highly dependent on the nature of the phosphine and the base used in the calculations. With the experimental reagents (P(t)Bu(3) and carbonate) the rate-determining step is C-H activation with the base coordinated trans to the C-H bond. An agostic interaction of a geminal C-H bond with respect to the bond to be cleaved induces a lowering of the activation barrier.  相似文献   

4.
Palladium-catalyzed direct arylations of benzene have been proposed to occur by the generation of a phosphine-ligated arylpalladium pivalate complex LPd(Ar)(OPiv) and reaction of this complex with benzene. We have isolated an example of the proposed intermediate and evaluated whether this complex does react with benzene to form the biaryl products of direct arylation. In contrast to the proposed mechanism, no biaryl product was formed from cleavage of the benzene C-H bond by LPd(Ar)(OPiv). However, reactions of LPd(Ar)(OPiv) with benzene and additives that displace or consume the phosphine ligand formed the arylated products in good yield, suggesting that a "ligandless" arylpalladium(II) carboxylate complex undergoes the C-H cleavage step. Consistent with this conclusion, we found that reactions catalyzed by Pd(OAc)(2) without a ligand occur faster than, and with comparable selectivities to, reactions catalyzed by Pd(OAc)(2) and a phosphine ligand.  相似文献   

5.
Rh(III)-catalyzed arylation of imines provides a new method for C-C bond formation while simultaneously introducing an α-branched amine as a functional group. This detailed mechanistic study provides insights for the rational future development of this new reaction. Relevant intermediate Rh(III) complexes have been isolated and characterized, and their reactivities in stoichiometric reactions with relevant substrates have been monitored. The reaction was found to be first order in the catalyst resting state and inverse first order in the C-H activation substrate.  相似文献   

6.
The reaction mechanism of the rhodium-phosphine catalysed borylation of methyl-substituted arenes using pinacolborane (HBpin) has been investigated theoretically using DFT calculations at the B3PW91 level. Factors affecting selectivity for benzylic vs. aromatic C-H bond activation have been examined. It was found that [Rh(PR3)2(H)] is the active species which oxidatively adds the C-H bond leading to an eta3-benzyl complex which is the key to determining the unusual benzylic regioselectivity observed experimentally for this catalyst system. Subsequent reaction with HBpin leads to a [Rh(PR3)2(eta3-benzyl)(H)(Bpin)] complex from which B-C reductive elimination provides product and regenerates the catalyst. The electrophilic nature of the boryl ligand assists in the reductive elimination process. In contrast to Ir(L)2(boryl)3-based catalysts, for which Ir(III)-Ir(V) cycles have been proposed, the Rh(I)-Rh(III) cycle is operating with the system addressed herein.  相似文献   

7.
Direct arylations of pyridine N-oxide (PyO), a convenient method to prepare 2-arylpyridines, catalyzed by Pd(OAc)(2) and PtBu(3) have been proposed to occur by the generation of a PtBu(3)-ligated arylpalladium acetate complex, (PtBu(3))Pd(Ar)(OAc) (1), and the reaction of this complex with PyO. We provide strong evidence that 1 does not react directly with PyO. Instead, our data imply that the cyclometalated complex [Pd(OAc)(tBu(2)PCMe(2)CH(2))](2), which is generated from the decomposition of 1, reacts with PyO and serves as a catalyst for the reaction of PyO with 1. The reaction of PyO with 1 occurs with an induction period, and the reaction of 1 with excess PyO in the presence of [Pd(OAc)(tBu(2)PCMe(2)CH(2))](2) is zeroth-order in 1. Moreover, the rates of reactions of PyO with bromobenzene catalyzed by [Pd(OAc)(tBu(2)PCMe(2)CH(2))](2) and [Pd(PtBu(3))(2)] depend on the concentration of [Pd(OAc)(tBu(2)PCMe(2)CH(2))](2) but not on the concentration of [Pd(PtBu(3))(2)]. Finally, the reaction of 1 with a model heteroarylpalladium complex containing a cyclometalated phosphine, [(PEt(3))Pd(2-benzothienyl)(tBu(2)PCMe(2)CH(2))], rapidly formed the arylated heterocycle. Together, these data imply that the rate-determining C-H bond cleavage occurs between PyO and the cyclometalated [Pd(OAc)(tBu(2)PCMe(2)CH(2))](2) rather than between PyO and 1. In this case, the resulting heteroarylpalladium complex transfers the heteroaryl group to 1, and C-C bond-formation occurs from (PtBu(3))Pd(Ar)(2-pyridyl oxide). This mechanism proposed for the direct arylation of PyO constitutes an example of C-H bond functionalization in which C-H activation occurs at one metal center and the activated moiety undergoes functionalization after transfer to a second metal center.  相似文献   

8.
Fagnou et al. reported direct arylation reactions that use palladium catalysts to couple Ar(1)-X to Ar(2)-H with the aid of a coordinated base. These reactions are particularly favourable for polyfluorinated arenes Ar(2)-H (see S. I. Gorelsky, D. Lapointe and K. Fagnou, J. Am. Chem. Soc. 2008, 130, 10848). In this paper, we show by means of a DFT analysis how the energetics and activation energies vary with fluorine substitution and examine the structures of intermediates and transition states. The reactant is modelled by Pd(OAc)(Ph)(PMe(3))(DMA) (DMA = dimethylacetamide). The sequence consists of (a) replacement of DMA by arene, (b) Concerted Deprotonation Metallation (CMD), (c) decoordination of AcOH, (d) reductive elimination of biaryl. Many of the variations are dominated by the number of fluorine substituents ortho to the C-H bond and fall into three groups labelled accordingly: Set0Fo, Set1Fo, and Set2Fo. In the first step a coordinated solvent is replaced by the arene. The arenes of Set0Fo and Set1Fo coordinate in a conventional η(2)-CH=CH mode, whereas the arenes of Set2Fo coordinate in an η(1)-CH mode assisted by an OH-C hydrogen bond from the coordinated acetate. Both the energy barriers to CMD and the product energies fall into the three typical sets with the highest barrier and highest product energy being for Set0Fo. They correlate more satisfactorily with the variations in Pd-C bond energies than with the C-H acidities. The barriers to reductive elimination from Pd(Ph)(Ar(F))(PMe(3))(AcOH) increase systematically from Set0Fo to Set2Fo as the Pd-C bond becomes stronger in a regular fashion from Set0Fo to Set2Fo. Again there is a strong correlation between the energy barriers to reductive elimination and the Pd-C bond energies. It is found overall that the key aspects of the reactions are: (a) the lowering of the energy of the CMD step by the ortho fluorine substituents, (b) the regioselective activation of C-H bonds ortho to fluorine which is also determined at the CMD step, (c) the decoordination of AcOH, which maintains the transition state for reductive elimination at low Gibbs free energy. The presence of fluorine increases the effectiveness of the reaction in the sense of points a and b via the increasing strength of the palladium-carbon bond.  相似文献   

9.
A Pd(OAc)(2)-catalyzed cross-coupling reaction between 2-arylpyridine and aryltrimethoxysilane in the presence of AgF and BQ in 1,4-dioxane was studied. After various reaction parameters (catalyst, oxidant, additive, solvent and reaction temperature) were examined, the optimal conditions for the reaction were identified. The synthesis is compatible to aryltrimethoxysilane with both electron-withdrawing and electron-donating groups on the aryl moiety with moderate yields. The kinetic isotope effect (k(H)/k(D)) for the C-H bond activation was provided.  相似文献   

10.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

11.
Pd(II) caught in the act: The diaryl Pd(II) intermediate of a Pd(II)-catalyzed oxidative biaryl bond formation proceeding via a double C-H bond activation has been isolated and fully characterized, including an X-ray crystal structure analysis. Stabilization due to chelation by adjacent pivaloyloxy and acetyl groups has allowed the isolation of this long-sought crucial intermediate. On gentle warming, the complex is transformed into a carbazole product, and the catalytically active Pd(II) species is regenerated by oxidation with Cu(II).  相似文献   

12.
This paper describes mechanistic studies on the functionalization of arenes with the diboron reagent B(2)pin(2) (bis-pinacolato diborane(4)) catalyzed by the combination of 4,4'-di-tert-butylbipyridine (dtbpy) and olefin-ligated iridium halide or olefin-ligated iridium alkoxide complexes. This work identifies the catalyst resting state as [Ir(dtbpy)(COE)(Bpin)(3)] (COE = cyclooctene, Bpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl). [Ir(dtbpy)(COE)(Bpin)(3)] was prepared by independent synthesis in high yield from [Ir(COD)(OMe)](2), dtbpy, COE, and HBpin. This complex is formed in low yield from [Ir(COD)(OMe)](2), dtbpy, COE, and B(2)pin(2). Kinetic studies show that this complex reacts with arenes after reversible dissociation of COE. An alternative mechanism in which the arene reacts with the Ir(I) complex [Ir(dtbpy)Bpin] after dissociation of COE and reductive elimination of B(2)pin(2) does not occur to a measurable extent. The reaction of [Ir(dtbpy)(COE)(Bpin)(3)] with arenes and the catalytic reaction of B(2)pin(2) with arenes catalyzed by [Ir(COD)(OMe)](2) and dtbpy occur faster with electron-poor arenes than with electron-rich arenes. However, both the stoichiometric and catalytic reactions also occur faster with the electron-rich heteroarenes thiophene and furan than with arenes, perhaps because eta(2)-heteroarene complexes are more stable than the eta(2)-arene complexes and the eta(2)-heteroarene or arene complexes are intermediates that precede oxidative addition. Kinetic studies on the catalytic reaction show that [Ir(dtbpy)(COE)(Bpin)(3)] enters the catalytic cycle by dissociation of COE, and a comparison of the kinetic isotope effects of the catalytic and stoichiometric reactions shows that the reactive intermediate [Ir(dtbpy)(Bpin)(3)] cleaves the arene C-H bond. The barriers for ligand exchange and C-H activation allow an experimental assessment of several conclusions drawn from computational work. Most generally, our results corroborate the conclusion that C-H bond cleavage is turnover-limiting, but the experimental barrier for this bond cleavage is much lower than the calculated barrier.  相似文献   

13.
The use of ligands to control regioselectivity in transition-metal-catalyzed C-H activation/functionalization is a highly desirable but challenging task. Recently, Itami et al. reported an important finding relating to Pd-catalyzed ligand-controlled α/β-selective C-H arylation of thiophenes. Specifically, the use of the 2,2'-bipyridyl ligand resulted in α-arylation, whereas the use of the bulky fluorinated phosphine ligand P[OCH(CF(3))(2)](3) resulted in β-arylation. Understanding of this surprising ligand-controlled α/β-selectivity could provide important insights into the development of more efficient catalyst systems for selective C-H arylation, and so we carried out a detailed computational study on the problem with use of density functional theory methods. Three mechanistic possibilities--S(E)Ar and migration, metalation/deprotonation, and Heck-type arylation mechanisms--were examined. The results showed that the S(E)Ar and migration mechanism might not be plausible, because the key Wheland intermediates could not be obtained. On the other hand, our study indicated that the metalation/deprotonation and Heck-type arylation mechanisms were both involved in Itami's reactions. In the metalation/deprotonation pathway the α-selective product (C5-product) was preferred, whereas in the Heck-type arylation mechanism the β-selective product (C4-product) was favored. The ligands played crucial roles in tuning the relative barriers of the two different pathways. In the 2,2'-bipyridyl-assisted system, the metalation/deprotonation pathway was energetically advantageous, leading to α-selectivity. In the P[OCH(CF(3))(2)](3)-assisted system, on the other hand, the Heck-type arylation mechanism was kinetically favored, leading to β-selectivity. An interesting finding was that P[OCH(CF(3))(2)](3) could produce a C-H···O hydrogen bond in the catalyst system, which was crucial for stabilization of the Heck-type transition state. In comparison, this C-H···O hydrogen bond was absent with the other phosphine ligands [i.e., P(OMe)(3), PPh(3), PCy(3)] and these phosphine ligands therefore favored the metalation/deprotonation pathway leading to α-selectivity. Furthermore, in this study we have provided theoretical evidence showing that the Heck-type arylation reaction could proceed through an anti-β-hydride elimination process.  相似文献   

14.
Pd(OAc)(2)-catalyzed intermolecular C-H/C-H cross-coupling reactions between electron-deficient polyfluoroarenes and simple arenes for the synthesis of fluorinated biaryls have been developed. Deuterium-labeling experiments suggested that C-H bond cleavage of the simple arenes rather than the polyfluoroarenes is involved in the rate-limiting step.  相似文献   

15.
Metal carbenes play a pivotal role in transition-metal-catalyzed synthetic transfer reactions. The metal carbene is generated either from a diazo compound through facile extrusion of N2 with a metal catalyst or in situ generated from other sources like triazoles, pyriodotriazoles, sulfoxonium ylides and iodonium-ylide. On the other hand, Co(III), Rh(III) & Ir(III)-catalyzed C−H functionalizations have been well established as a key synthetic step to enable the construction of various synthetic transformations. Interestingly, in recent years, merging of these two concepts C−H activation and carbene migratory insertion gained much attention, in particular group 9 metal-catalyzed arene C−H functionalizations with carbene precursors via carbene migratory insertion. In this review, we summarize recent advances in Co(III), Rh(III) & Ir(III)-catalyzed direct C−H alkylation/alkenylation/arylation with carbene precursors and also discuss key synthetic intermediates within the catalytic cycles.  相似文献   

16.
We have discovered that the combination of Pd(OAc)(2)/o-chloranil can catalyze the direct C-H bond arylation of polycyclic aromatic hydrocarbons (PAHs) with arylboroxins that occurs selectively at the K-region. The sequential integration of Pd-catalyzed direct arylation of PAHs and FeCl(3)-mediated cyclodehydrogenation is effective in rapidly extending a parent PAH π-system with high directionality.  相似文献   

17.
Both base-assisted non-concerted metallation-deprotonation (nCMD) and concerted metallation-deprotonation (CMD) have been identified as two potent operating mechanisms in palladium-catalysed direct C-H coupling of oxazole and thiazole-4-carboxylate esters with halides through base- and solvent-effect experiments. Novel C2- and C5-selective CMD direct arylation procedures in oxazole- and thiazole-4-carboxylate series were then designed by controlling the balance between electronic and steric factors. Notably, charge interactions between the palladium catalyst and substrate were identified as a parameter for controlling selectivity and reducing the impact of steric factors in the CMD reaction.  相似文献   

18.
The origin of the high levels of reactivity and diastereoselectivity (>99:1 dr) observed in the oxazoline-directed, Pd(II)-catalyzed sp(3) C-H bond iodination and acetoxylation reactions as reported in previous publications has been studied and explained on the basis of experimental and computational investigations. The characterization of a trinuclear chiral C-H insertion intermediate by X-ray paved the way for further investigations into C-H insertion step through the lens of stereochemistry. Computational investigations on reactivities and diastereoselectivities of C-H activation of t-Bu- and i-Pr-substituted oxazolines provided good agreement with the experimental results. Theoretical predictions with DFT calculations revealed that C-H activation occurs at the monomeric Pd center and that the most preferred transition state for C-H activation contains two sterically bulky t-Bu substituents in anti-positions due to steric repulsion and that this transition state leads to the major diastereomer, which is consistent with the structure of the newly characterized C-H insertion intermediate. The structural information about the transition state also suggests that a minimum dihedral angle between C-H bonds and Pd-OAc bonds is crucial for C-H bond cleavage. We have also utilized density functional theory (DFT) to calculate the energies of various potential intermediates and transition states with t-Bu- and i-Pr-substituted oxazolines and suggested a possible explanation for the substantial difference in reactivity between the t-Bu- and i-Pr-substituted oxazolines.  相似文献   

19.
Directing groups that can act as internal oxidants have recently been shown to be beneficial in metal-catalyzed heterocycle syntheses that undergo C-H functionalization. Pursuant to the rhodium(III)-catalyzed redox-neutral isoquinolone synthesis that we recently reported, we present in this article the development of a more reactive internal oxidant/directing group that can promote the formation of a wide variety of isoquinolones at room temperature while employing low catalyst loadings (0.5 mol %). In contrast to previously reported oxidative rhodium(III)-catalyzed heterocycle syntheses, the new conditions allow for the first time the use of terminal alkynes. Also, it is shown that the use of alkenes, including ethylene, instead of alkynes leads to the room temperature formation of 3,4-dihydroisoquinolones. Mechanistic investigations of this new system point to a change in the turnover limiting step of the catalytic cycle relative to the previously reported conditions. Concerted metalation-deprotonation (CMD) is now proposed to be the turnover limiting step. In addition, DFT calculations conducted on this system agree with a stepwise C-N bond reductive elimination/N-O bond oxidative addition mechanism to afford the desired heterocycle. Concepts highlighted by the calculations were found to be consistent with experimental results.  相似文献   

20.
Reductive elimination of C-Cl and C-C bonds from binuclear organopalladium complexes containing Pd-Pd bonds with overall formal oxidation state +III are explored by density functional theory for dichloromethane and acetonitrile solvent environments. An X-ray crystallographically authenticated neutral complex, [(L-C,N)ClPd(μ-O(2)CMe)](2) (L = benzo[h]quinolinyl) (I), is examined for C-Cl coupling, and the proposed cation, [(L-C,N)PhPd(1)(μ-O(2)CMe)(2)Pd(2)(L-C,N)](+) (II), examined for C-C coupling together with (L-C,N)PhPd(1)(μ-O(2)CMe)(2)Pd(2)Cl(L-C,N) (III) as a neutral analogue of II. In both polar and nonpolar solvents, reaction from III via chloride dissociation from Pd(2) to form II is predicted to be favored. Cation II undergoes Ph-C coupling at Pd(1) with concomitant Pd(1)-Pd(2) lengthening and shortening of the Pd(1)-O bond trans to the carbon atom of L; natural bond orbital analysis indicates that reductive coupling from II involves depopulation of the d(x(2)-y(2)) orbital of Pd(1) and population of the d(z(2)) orbitals of Pd(1) and Pd(2) as the Pd-Pd bond lengthens. Calculations for the symmetrical dichloro complex I indicate that a similar dissociative pathway for C-Cl coupling is competitive with a direct (nondissociative) pathway in acetonitrile, but the direct pathway is favored in dichloromethane. In contrast to the dissociative mechanism, direct coupling for I involves population of the d(x(2)-y(2)) orbital of Pd(1) with Pd(1)-O(1) lengthening, significantly less population occurs for the d(z(2)) orbital of Pd(1) than for the dissociative pathway, and d(z(2)) at Pd(2) is only marginally populated resulting in an intermediate that is formally a Pd(1)(I)-Pd(2)(III) species, (L-Cl-N,Cl)Pd(1)(μ-O(2)CMe)Pd(2)Cl(O(2)CMe)(L-C,N) that releases chloride from Pd(2) with loss of Pd(I)-Pd(III) bonding to form a Pd(II) species. A similar process is formulated for the less competitive direct pathway for C-C coupling from III, in this case involving decreased population of the d(z(2)) orbital of Pd(2) and strengthening of the Pd(I)-Pd(III) interaction in the analogous intermediate with η(2)-coordination at Pd(1) by L-Ph-N, C(1)-C(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号