首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Two structural series, including seven isomorphous heterodinuclear complexes, [Ln(DMSO)4(H2O)3(mu-CN)M(CN)5].H2O ([La-Fe] (1), [Pr-Fe] (2), [Pr-Co] (3), [Nd-Fe] (4), [Nd-Co] (5), [Sm-Fe] (6) and [Sm-Co] (7)), and seven isostructural 2-D stair-like cyano-bridged bimetallic assemblies, [Ln(DMSO)2(H2O)(mu-CN)4M(CN)2]n ([La-Fe]n (8), [Pr-Fe]n (9), [Pr-Co]n (10), [Nd-Fe]n (11), [Nd-Co]n (12), [Sm-Fe]n (13) and [Sm-Co]n (14)) (DMSO = dimethylsulfoxide), have been rationally prepared by a facile approach, a ball-milling method, and characterized by X-ray diffraction and magnetic measurements. The isomorphous structures, in conjunction with the diamagnetism of the Co(3+) and La(3+) ions, allow an approximation to the nature of coupling between the iron(III) and lanthanide(III) ions in the Ln(3+)-Fe(3+) complexes. The Ln(3+)-Fe(3+) interaction is ferromagnetic for the dinuclear [Pr-Fe] (2), [Nd-Fe] (4), and [Sm-Fe] (6) systems and for the 2-D [Pr-Fe]n (9), [Nd-Fe]n (11), and [Sm-Fe]n (13) assemblies.  相似文献   

2.
A series of luminescent branched platinum(II) alkynyl complexes, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]C-C6H4C[triple bond]C}3C6H3] (R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, C6H4SAc, 1-napthyl (Np), 1-pyrenyl (Pyr), 1-anthryl-8-ethynyl (HC[triple bond]CAn)), [1,3-{PyrC[triple chemical bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], and [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], was successfully synthesized by using the precursors [1,3,5-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] or [1,3-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3]. The X-ray crystal structures of [1,3,5-{MeOC6H4C[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An] have been determined. These complexes were found to show long-lived emission in both solution and solid-state phases at room temperature. The emission origin of the branched complexes [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, and C6H4SAc was tentatively assigned to be derived from triplet states of predominantly intraligand (IL) character with some mixing of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(C[triple bond]CR)) character, while the emission origin of the branched complexes with polyaromatic alkynyl ligands, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=Np, Pyr, or HC[triple bond]CAn, [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An], was tentatively assigned to be derived from the predominantly 3IL states of the respective polyaromatic alkynyl ligands, mixed with some 3MLCT (d(pi)(Pt)-->pi*(C[triple bond]CR)) character. By incorporating different alkynyl ligands into the periphery of these branched complexes, one could readily tune the nature of the lowest energy emissive state and the direction of the excitation energy transfer.  相似文献   

3.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

4.
The synthesis and spectroscopic properties of trans-[RuL4(C[triple bond]CAr)2] (L4 = two 1,2-bis(dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, 16-TMC; 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [(-)C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph] and [(-)C[triple bond]C(C6H4)(n-1)Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C[triple bond]CAr)2](0/+) are presented. DFT and TD-DFT calculations have been performed on trans-[Ru(L')4(C[triple bond]CAr)2](0/+) (L' = PH3 and NH3) to examine the metal-acetylide pi-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph}2] (n = 1-3) is linear, and (2) the sum of the d(pi)(Ru(II)) --> pi*(C[triple bond]CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2] and the pi(C[triple bond]CAr) --> d(pi)(Ru(III)) LMCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]+ corresponds to the intraligand pi pi* absorption energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]. The crystal structure of trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)2Ph}2] shows that the two edges of the molecule are separated by 41.7 A. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E(1/2) values for oxidation of trans-[RuL4(C[triple bond]CAr)2] that span over 870 mV and lambda(max) values of trans-[RuL4(C[triple bond]CAr)2] that range from 19,230 to 31,750 cm(-1). The overall experimental findings suggest that the pi-back-bonding interaction in trans-[RuL4(C[triple bond]CAr)2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid pi-conjugated rod.  相似文献   

5.
Green [HIPTN3N]V(THF) ([HIPTN3N]3- = [(HIPTNCH2CH2)3N]3-, where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) can be prepared in a 70-80% yield via the addition of H3[HIPTN3N] to VCl3(THF)3 in THF, followed by the addition of LiN(SiMe3)2. From [HIPTN3N]V(THF), the following have been prepared: {[HIPTN3N]VN2}K, [HIPTN3N]V(NH3), [HIPTN3N]V=NH, [HIPTN3N]V=NSiMe3, [HIPTN3N]V=O, [HIPTN3N]V=S, and [HIPTN3N]V(CO). No ammonia is formed from dinitrogen using {[HIPTN3N]VN2}K, [HIPTN3N]V=NH, or [HIPTN3N]V(NH3) as the initial species under conditions that were successful in the analogous [HIPTN3N]Mo system. X-ray structural studies are reported for [HIPTN3N]V(THF) and [HIPTN3N]V(NH3).  相似文献   

6.
Reported here is the synthesis and self-assembly characterization of [n.n]paracyclophanes ( [n.n]pCps , n=2, 3) equipped with anilide hydrogen bonding units. These molecules differ from previous self-assembling [n.n]paracyclophanes ( [n.n]pCps ) in the connectivity of their amide hydrogen bonding units (C-centered/carboxamide vs. N-centered/anilide). This subtle change results in a ≈30-fold increase in the elongation constant for the [2.2]pCp -4,7,12,15-tetraanilide ( [2.2]pCpNTA ) compared to previously reported [2.2]pCp -4,7,12,15-tetracarboxamide ( [2.2]pCpTA ), and a ≈300-fold increase in the elongation constant for the [3.3]pCp -5,8,14,17-tetraanilide ( [3.3]pCpNTA ) compared to previously reported [3.3]pCp -5,8,14,17-tetracarboxamide ( [3.3]pCpTA ). The [n.n]pCpNTA monomers also represent the reversal of a previously reported trend in solution-phase assembly strength when comparing [2.2]pCpTA and [3.3]pCpTA monomers. The origins of the assembly differences are geometric changes in the association between [n.n]pCpNTA monomers—revealed by computations and X-ray crystallography—resulting in a more favorable slipped stacking of the intermolecular π-surfaces ( [n.n]pCpNTA vs. [n.n]pCpTA ), and a more complementary H-bonding geometry ( [3.3]pCpNTA vs. [2.2]pCpNTA ).  相似文献   

7.
The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to 13 one-dimensional complexes: trans-[M(CN)4(mu-CN)2Ln(H2O)4(bpy)]n.4nH2O.1.5nbpy (Ln = Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Lu3+; M = Fe3+, Co3+). The structures for [EuFe]n (1), [TbFe]n (2), [DyFe]n (3), [HoFe]n (4), [ErFe]n (5), [TmFe]n (6), [LuFe]n (7), [EuCo]n (8), [TbCo]n (9), [DyCo]n (10), [HoCo]n (11), [ErCo]n (12), and [TmCo]n (13) have been solved: they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular architecture created by the interplay of coordinative, hydrogen bonding, and pi-pi interactions. A stereochemical study of the eight-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. The Ln3+-Fe3+ interaction is antiferromagnetic in [DyFe]n and [TbFe]n. For [EuFe]n, [HoFe]n, [ErFe]n, and [TmFe]n, there is no sign of any significant interaction. The magnetic behavior of [DyFe]n suggests the onset of weak long-range ferromagnetic ordering at 2.5 K.  相似文献   

8.
The oxidation processes undergone by the [Pt2(mu-S)2] core in [Pt2(P[intersection]P)2(mu-S)2](P[intersection]P = Ph2P(CH2)nPPh2, n= 2,3) complexes have been analysed on the basis of electrochemical measurements. The experimental results are indicative of two consecutive monoelectronic oxidations after which the [Pt2(mu-S)2] core evolves into [Pt2(mu-S2)]2+, containing a bridging disulfide ligand. However, the instability of the monoxidised [Pt2(P[intersection]P)2(mu-S)2]+ species formed initially, which converts into [Pt3(P[intersection]P)3(mu-S)2]2+, hampered the synthesis and characterisation of the mono and dioxidised species. These drawbacks have been surpassed by means of DFT calculations which have also allowed the elucidation of the structural features of the species obtained from the oxidation of [Pt2(P[intersection]P)2(mu-S)2] compounds. The calculated redox potentials corresponding to the oxidation processes are consistent with the experimental data obtained. In addition, calculations on the thermodynamics of possible processes following the degradation of [Pt2(P[intersection]P)2(mu-S)2]+ are fully consistent with the concomitant formation of monometallic [Pt(P[intersection]P)S2)] and trimetallic [Pt3(P[intersection]P)3(mu-S)2]2+ compounds. Extension of the theoretical study on the [Pt2Te2] core and comparisons with the results obtained for [Pt2S2] have given a more general picture of the behaviour of [Pt2X2](X = chalcogenide) cores subject to oxidation processes.  相似文献   

9.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

10.
Heating 3-hydroxy-1,2,3,4-tetrahydrobenzo[h]quinoline with phosphorus oxychloride gave a mixture of isomeric 3-chloro-1,2,3,4-tetrahydrobenzo[h]quinoline and 2-(chloromethyl)-benz[g]indoline, which are converted to a mixture of 3-benzoyloxy-1,2,3,4-tetrahydrobenzo-[h]quinoline and 2-(benzoyloxymethyl)benz[g]indoline on reaction with potassium benzoate. Saponification of 2-(benzoyloxymethyl)benz[g]indoline gave 2-(hydroxymethyl)benz[g]indoline. The reaction of the isomeric chloro derivatives with potassium cyanide gave 2-(benz[g]-indolinyl)acetonitrile.See [1] for communication IX.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 362–366, March, 1972.  相似文献   

11.
Seven diiron(II) complexes, [Fe(II)(2)(PMAT)(2)](X)(4), varying only in the anion X, have been prepared, where PMAT is 4-amino-3,5-bis{[(2-pyridylmethyl)-amino]methyl}-4H-1,2,4-triazole and X = BF(4)(-) (1), Cl(-) (2), PF(6)(-) (3), SbF(6)(-) (4), CF(3)SO(3)(-) (5), B(PhF)(4)(-) (6), and C(16)H(33)SO(3)(-) (7). Most were isolated as solvates, and the microcrystalline ([3], [4]·2H(2)O, [5]·H(2)O, and [6]·?MeCN) or powder ([2]·4H(2)O, and [7]·2H(2)O) samples obtained were studied by variable-temperature magnetic susceptibility and Mo?ssbauer methods. A structure determination on a crystal of [2]·2MeOH·H(2)O, revealed it to be a [LS-HS] mixed low spin (LS)-high spin (HS) state dinuclear complex at 90 K, but fully high spin, [HS-HS], at 293 K. In contrast, structures of both [5]·?IPA·H(2)O and [7]·1.6MeOH·0.4H(2)O showed them to be [HS-HS] at 90 K, whereas magnetic and M?ssbauer studies on [5]·H(2)O and [7]·2H(2)O revealed a different spin state, [LS-HS], at 90 K, presumably because of the difference in solvation. None of these complexes undergo thermal spin crossover (SCO) to the fully LS form, [LS-LS]. The PF(6)(-) and SbF(6)(-) complexes, 3 and [4]·2H(2)O, appear to be a mixture of [HS-LS] and [HS-HS] at low temperature, and undergo gradual SCO to [HS-HS] on warming. The CF(3)SO(3)(-) complex [5]·H(2)O undergoes gradual, partial SCO from [HS-LS] to a mixture of [HS-LS] and [HS-HS] at T(1/2) ≈ 180 K. The B(PhF)(4)(-) and C(16)H(33)SO(3)(-) complexes, [6]·(1)/(2)MeCN and [7]·2H(2)O, are approximately [LS-HS] at all temperatures, with an onset of gradual SCO with T(1/2) > 300 K.  相似文献   

12.
Inverted cucurbit[n]urils (iCB[n]) form as intermediates during the synthesis of cucurbit[n]urils from glycoluril and formaldehyde in HCl (85 degrees C). Product resubmission experiments establish that the diastereomeric iCB[6] and iCB[7] are kinetic products that are less stable thermodynamically than CB[6] or CB[7] (>2.8 kcal mol(-1)). When iCB[6] or iCB[7] is heated under aqueous acidic conditions, a preference for ring contraction is noted in the formation of CB[5] and CB[6], respectively. Interestingly, under anhydrous acidic conditions ring size is preserved with iCB[6] delivering CB[6] cleanly. To establish the intramolecular nature of the iCB[6] to CB[6] conversion under anhydrous, but not aqueous, acidic conditions we performed crossover experiments involving mixtures of iCB[6] and its (13)C=O labeled isotopomer (13)C(12)-iCB[6]. An unusual diastereomeric CB[6] with a M?bius geometry (13) is proposed as a mechanistic intermediate in the conversion of iCB[6] to CB[6] under anhydrous acidic conditions. The improved mechanistic understanding provided by this study suggests improved routes to CB[n]-type compounds.  相似文献   

13.
Lee WY  Liang LC 《Inorganic chemistry》2008,47(8):3298-3306
Deprotonation of N-(2-fluorophenyl)-2,6-diisopropylaniline (H[ (i) PrAr-NF]) with 1 equiv of n-BuLi in toluene at -35 degrees C produced cleanly [ (i) PrAr-NF]Li. Subsequent recrystallization of [ (i) PrAr-NF]Li in diethyl ether generated the bis(ether) adduct [ (i) PrAr-NF]Li(OEt 2) 2. An X-ray study of [ (i) PrAr-NF]Li(OEt 2) 2 showed it to be a four-coordinate species with the coordination of the fluorine atom to the lithium center. The reactions of [ (i) PrAr-NF]Li with MCl 4(THF) 2 (M = Zr, Hf), regardless of the stoichiometry employed, afforded the corresponding dichloride complexes [ (i) PrAr-NF] 2MCl 2 (M = Zr, Hf). Alkylation of [ (i) PrAr-NF] 2MCl 2 with a variety of Grignard reagents generated [ (i) PrAr-NF] 2MR 2 (M = Zr, Hf; R = Me, i-Bu, CH 2Ph). The X-ray structures of [ (i) PrAr-NF] 2ZrCl 2, [ (i) PrAr-NF] 2HfCl 2, [ (i) PrAr-NF] 2ZrMe 2, [ (i) PrAr-NF] 2Zr( i-Bu) 2, and [ (i) PrAr-NF] 2Hf(CH 2Ph) 2 are all indicative of the coordination of the fluorine atoms to these group 4 metals, leading to a C 2-symmetric, distorted octahedral geometry for these molecules.  相似文献   

14.
The successive addition of KCN and Ph3CCl to B(C6F4-C6F5-2)3 (PBB) affords triphenylmethyl salts of the [NC-PBB]- anion. By contrast, the analogous reaction with sodium dicyanamide followed by treatment with Ph(3)CCl leads to the zwitterionic aminoborane H2NB(C12F9)2C12F8, via nucleophilic attack on an o-F atom, together with CPh3[F-PBB]. Whereas treatment of [NC-PBB]- with either PBB or B(C6F5)3 fails to give isolable cyano-bridged diborates, the reaction of Me3SiNC-B(C6F5)3 with PBB in the presence of Ph3CCl affords [Ph3C][PBB-NC-B(C6F5)3]. Due to steric hindrance this anion is prone to borane dissociation. The longer linking group N(CN)2- gives the very voluminous anions [N[CNB(C6F5)3]2]- and [N(CN-PBB)2]-. A comparison of propylene polymerisations with rac-Me2Si(Ind)2ZrMe2 activated with the various boranes or trityl borates gives an anion-dependent activity sequence, in the order [NC-PBB]- < [MeB(C6F5)3]- < [MePBB]- approximately [PBB-NCB(C6F5)3]- approximately [N[CNB(C6F5)3]2]- < [F-PBB]-< [B(C6F5)4]- < [N(CN-PBB)2]-. The anion [N(CN-PBB)2]- gives a catalyst productivity about 2500 times higher than that of [NC-PBB]- and exceeds that of [B(C6F5)4]- based catalysts. The van der Waals volumes and surface areas of the anions have been calculated and provide a rationale for the observed reactivity trends in polymerisation reactions.  相似文献   

15.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

16.
Tris(2-pyridylthio)methane, [Tptm]H, has been employed to synthesize the mononuclear alkyl zinc hydride complex, [κ(3)-Tptm]ZnH, which has been structurally characterized by X-ray diffraction. [κ(3)-Tptm]ZnH provides access to a variety of other [Tptm]ZnX derivatives. For example, [κ(3)-Tptm]ZnH reacts with (i) R(3)SiOH (R = Me, Ph) to give [κ(4)-Tptm]ZnOSiR(3), (ii) Me(3)SiX (X = Cl, Br, I) to give [κ(4)-Tptm]ZnX, and (iii) CO(2) to give the formate complex, [κ(4)-Tptm]ZnO(2)CH. The bis(trimethylsilyl)amide complex [κ(3)-Tptm]ZnN(SiMe(3))(2) also reacts with CO(2), but the product obtained is the isocyanate complex, [κ(4)-Tptm]ZnNCO. The formation of [κ(4)-Tptm]ZnNCO is proposed to involve initial insertion of CO(2) into the Zn-N(SiMe(3))(2) bond, followed by migration of a trimethylsilyl group from nitrogen to oxygen to generate [κ(4)-Tptm]ZnOSiMe(3) and Me(3)SiNCO, which subsequently undergo CO(2)-promoted metathesis to give [κ(4)-Tptm]ZnNCO and (Me(3)SiO)(2)CO.  相似文献   

17.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

18.
The reaction of the sodium salt of 1-amino-closo-dodecaborate [Na]2[NH2-B12H11] ([Na]2[1]) with [Au(PPh3)Cl] and [Ni(THF)2(Br)2] led to eta 1(N) coordination of 1in [Na][Au(PPh3)(NH2-B12H11)] (2) and [Na]6[Ni(NH2-B12H11)4] (3), respectively. Furthermore, eta 2(N,BH) coordination of was found in [MePPh3][Rh(PPh3)2(NH2-B12H11)] (4), which was synthesized by the reaction of [MePPh3][Na][1] with [Rh(PPh3)3Cl]. All compounds were characterized by single crystal X-ray diffraction and heteronuclear NMR spectroscopy.  相似文献   

19.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

20.
Synthesis of the glutaraldehyde derivatives calix[n]arene (n = 4,6,8) (Calix[n]-GA) and using as cross-linkers for immobilization of Candida rugosa lipase (CRL) have been discussed in this paper. The amino functional calix[n]arene derivatives (Calix[n]-NH 2) were synthesized via reduction of dinitrile, hexanitrile and octanitrile derivatives of calix[n]arenes. These amino functional calix[n]arene derivatives (Calix[n]-NH 2) were converted to their aldehyde derivativatives with glutaraldehyde. The calix[n]arene derivatives were used in lipase immobilization in order to see the role of calix[n]arene binding site on the lipase activitiy and stability. The activity recovery of calix[n]arene-supported lipases (Calix[n]-CRL) based on the Calix[4]-CRL, Calix[6]-CRL and Calix[8]-CRL reaches to 53.5, 66.1 and 76.4%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号