首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the randomly weighted sums $ \sum\nolimits_{k = 1}^n {{\theta_k}{X_k},n \geqslant 1} $ , where $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ are n real-valued random variables with subexponential distributions, and $ \left\{ {{\theta_k},1 \leqslant k \leqslant n} \right\} $ are other n random variables independent of $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ and satisfying $ a \leqslant \theta \leqslant b $ for some $ 0 < a \leqslant b < \infty $ and all $ 1 \leqslant k \leqslant n $ . For $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ satisfying some dependent structures, we prove that $$ {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant m \leqslant n} \sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant k \leqslant n} {\theta_k}{X_k} > x} \right)\sim \sum\limits_{k = 1}^m {{\text{P}}\left( {{\theta_k}{X_k} > x} \right)} $$ as x??????.  相似文献   

2.
3.
Let \({\mathbb{D}}\) be an arbitrary division ring and \({{\rm M_{n}}(\mathbb{D})}\) be the set of all n × n matrices over \({\mathbb{D}}\) . We define the rank subtractivity or minus partial order on \({{\rm M_{n}}(\mathbb{D})}\) as defined on \({{\rm M_{n}}(\mathbb{C})}\) , i.e., \({A \leqslant B}\) iff rank(B) = rank(A) + rank(B?A). We describe the structure of maps Φ on \({{\rm M_{n}}(\mathbb{D})}\) such that \({A\leqslant B}\) iff \({\Phi(A)\leqslant \Phi(B) (A, B\in {\rm M_{n}}(\mathbb{D}) )}\) .  相似文献   

4.
Let K be a field, $\mathcal {O}_v$ a valuation ring of K associated to a valuation v: K → Γ?∪?{?∞?}, and m v the unique maximal ideal of $\mathcal {O}_v$ . Consider an ideal $\mathcal {I}$ of the free K-algebra $K\langle X\rangle =K\langle X_1,...,X_n\rangle$ on X 1,...,X n . If ${\cal I}$ is generated by a subset $\mathcal {G}\subset{\cal O}_v\langle X\rangle$ which is a monic Gr?bner basis of ${\cal I}$ in $K\langle X\rangle$ , where $\mathcal {O}_v\langle X\rangle =\mathcal{O}_v\langle X_1,...,X_n\rangle$ is the free $\mathcal{O}_v$ -algebra on X 1,...,X n , then the valuation v induces naturally an exhaustive and separated Γ-filtration F v A for the K-algebra $A=K\langle X\rangle /\mathcal {I}$ , and moreover $\mathcal{I}\cap\mathcal{O}_v\langle X\rangle =\langle\mathcal{G}\rangle$ holds in $\mathcal{O}_v\langle X\rangle$ ; it follows that, if furthermore $\mathcal{G}\not\subset {\bf m}_v{O}_v\langle X\rangle$ and $k\langle X\rangle /\langle\overline{\mathcal G}\rangle$ is a domain, where $k=\mathcal{O}_v/{\bf m}_v$ is the residue field of $\mathcal{O}_v$ , $k\langle X\rangle =k\langle X_1,...,X_n\rangle$ is the free k-algebra on X 1,...,X n , and $\overline{\mathcal G}$ is the image of $\mathcal{G}$ under the canonical epimorphism $\mathcal{O}_v\langle X\rangle\rightarrow k\langle X\rangle$ , then F v A determines a valuation function A → Γ?∪?{?∞?}, and thereby v extends naturally to a valuation function on the (skew-)field Δ of fractions of A provided Δ exists.  相似文献   

5.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

6.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

7.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

8.
A partial orthomorphism of ${\mathbb{Z}_{n}}$ is an injective map ${\sigma : S \rightarrow \mathbb{Z}_{n}}$ such that ${S \subseteq \mathbb{Z}_{n}}$ and ??(i)?Ci ? ??(j)? j (mod n) for distinct ${i, j \in S}$ . We say ?? has deficit d if ${|S| = n - d}$ . Let ??(n, d) be the number of partial orthomorphisms of ${\mathbb{Z}_{n}}$ of deficit d. Let ??(n, d) be the number of partial orthomorphisms ?? of ${\mathbb{Z}_n}$ of deficit d such that ??(i) ? {0, i} for all ${i \in S}$ . Then ??(n, d) =???(n, d)n 2/d 2 when ${1\,\leqslant\,d < n}$ . Let R k, n be the number of reduced k ×?n Latin rectangles. We show that $$R_{k, n} \equiv \chi (p, n - p)\frac{(n - p)!(n - p - 1)!^{2}}{(n - k)!}R_{k-p,\,n-p}\,\,\,\,(\rm {mod}\,p)$$ when p is a prime and ${n\,\geqslant\,k\,\geqslant\,p + 1}$ . In particular, this enables us to calculate some previously unknown congruences for R n, n . We also develop techniques for computing ??(n, d) exactly. We show that for each a there exists??? a such that, on each congruence class modulo??? a , ??(n, n-a) is determined by a polynomial of degree 2a in n. We give these polynomials for ${1\,\leqslant\,a\,\leqslant 6}$ , and find an asymptotic formula for ??(n, n-a) as n ?? ??, for arbitrary fixed a.  相似文献   

9.
Zeev Nutov 《Combinatorica》2014,34(1):95-114
Part of this paper appeared in the preliminary version [16]. An ordered pair ? = (S, S +) of subsets of a groundset V is called a biset if S ? S+; (V S +;V S) is the co-biset of ?. Two bisets \(\hat X,\hat Y\) intersect if X XY \(\not 0\) and cross if both XY \(\not 0\) and X +Y + ≠= V. The intersection and the union of two bisets \(\hat X,\hat Y\) are defined by \(\hat X \cap \hat Y = (X \cap Y,X^ + \cap Y^ + )\) and \(\hat X \cup \hat Y = (X \cup Y,X^ + \cup Y^ + )\) . A biset-family \(\mathcal{F}\) is crossing (intersecting) if \(\hat X \cap \hat Y,\hat X \cup \hat Y \in \mathcal{F}\) for any \(\hat X,\hat Y \in \mathcal{F}\) that cross (intersect). A directed edge covers a biset ? if it goes from S to V S +. We consider the problem of covering a crossing biset-family \(\mathcal{F}\) by a minimum-cost set of directed edges. While for intersecting \(\mathcal{F}\) , a standard primal-dual algorithm computes an optimal solution, the approximability of the case of crossing \(\mathcal{F}\) is not yet understood, as it includes several NP-hard problems, for which a poly-logarithmic approximation was discovered only recently or is not known. Let us say that a biset-family \(\mathcal{F}\) is k-regular if \(\hat X \cap \hat Y,\hat X \cup \hat Y \in \mathcal{F}\) for any \(\hat X,\hat Y \in \mathcal{F}\) with |V (XY)≥k+1 that intersect. In this paper we obtain an O(log |V|)-approximation algorithm for arbitrary crossing \(\mathcal{F}\) if in addition both \(\mathcal{F}\) and the family of co-bisets of \(\mathcal{F}\) are k-regular, our ratios are: \(O\left( {\log \frac{{|V|}} {{|V| - k}}} \right) \) if |S + \ S| = k for all \(\hat S \in \mathcal{F}\) , and \(O\left( {\frac{{|V|}} {{|V| - k}}\log \frac{{|V|}} {{|V| - k}}} \right) \) if |S + \ S| = k for all \(\hat S \in \mathcal{F}\) . Using these generic algorithms, we derive for some network design problems the following approximation ratios: \(O\left( {\log k \cdot \log \tfrac{n} {{n - k}}} \right) \) for k-Connected Subgraph, and O(logk) \(\min \{ \tfrac{n} {{n - k}}\log \tfrac{n} {{n - k}},\log k\} \) for Subset k-Connected Subgraph when all edges with positive cost have their endnodes in the subset.  相似文献   

10.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

11.
Let ${(\phi, \psi)}$ be an (m, n)-valued pair of maps ${\phi, \psi : X \multimap Y}$ , where ${\phi}$ is an m-valued map and ${\psi}$ is n-valued, on connected finite polyhedra. A point ${x \in X}$ is a coincidence point of ${\phi}$ and ${\psi}$ if ${\phi(x) \cap \psi(x) \neq \emptyset}$ . We define a Nielsen coincidence number ${N(\phi : \psi)}$ which is a lower bound for the number of coincidence points of all (m, n)-valued pairs of maps homotopic to ${(\phi, \psi)}$ . We calculate ${N(\phi : \psi)}$ for all (m, n)-valued pairs of maps of the circle and show that ${N(\phi : \psi)}$ is a sharp lower bound in that setting. Specifically, if ${\phi}$ is of degree a and ${\psi}$ of degree b, then ${N(\phi : \psi) = \frac{|an - bm|}{\langle m, n \rangle}}$ , where ${\langle m, n \rangle}$ is the greatest common divisor of m and n. In order to carry out the calculation, we obtain results, of independent interest, for n-valued maps of compact connected Lie groups that relate the Nielsen fixed point number of Helga Schirmer to the Nielsen root number of Michael Brown.  相似文献   

12.
13.
Let $\mathcal{G}(z):=\sum_{n\geqslant0} z^{2^{n}}(1-z^{2^{n}})^{-1}$ denote the generating function of the ruler function, and $\mathcal {F}(z):=\sum_{n\geqslant} z^{2^{n}}(1+z^{2^{n}})^{-1}$ ; note that the special value $\mathcal{F}(1/2)$ is the sum of the reciprocals of the Fermat numbers $F_{n}:=2^{2^{n}}+1$ . The functions $\mathcal{F}(z)$ and $\mathcal{G}(z)$ as well as their special values have been studied by Mahler, Golomb, Schwarz, and Duverney; it is known that the numbers $\mathcal {F}(\alpha)$ and $\mathcal{G}(\alpha)$ are transcendental for all algebraic numbers α which satisfy 0<α<1. For a sequence u, denote the Hankel matrix $H_{n}^{p}(\mathbf {u}):=(u({p+i+j-2}))_{1\leqslant i,j\leqslant n}$ . Let α be a real number. The irrationality exponent μ(α) is defined as the supremum of the set of real numbers μ such that the inequality |α?p/q|<q ?μ has infinitely many solutions (p,q)∈?×?. In this paper, we first prove that the determinants of $H_{n}^{1}(\mathbf {g})$ and $H_{n}^{1}(\mathbf{f})$ are nonzero for every n?1. We then use this result to prove that for b?2 the irrationality exponents $\mu(\mathcal{F}(1/b))$ and $\mu(\mathcal{G}(1/b))$ are equal to 2; in particular, the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2.  相似文献   

14.
We obtain the boundedness on ˙Fα,qp(Rn) for the Poisson summation and Gauss summation. Their maximal operators are proved to be bounded from˙Fα,qp(Rn) to L∞(Rn).For the maximal operator of the Bochner-Riesz summation, we prove that it is bounded from˙Fα,qp(Rn) to Lpnn-pα,∞(Rn).  相似文献   

15.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

16.
We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem $$\begin{aligned} \begin{array}{ll} \min \limits _{X\in \mathbb{R }^{m\times n}}&\mu _1\Vert \sigma (\mathcal{F }(X)-G)\Vert _\alpha +\mu _2\Vert \mathcal{C }(X)-d\Vert _\beta ,\\ \text{ subject} \text{ to}&\mathcal{A }(X)-b\in \mathcal{Q }, \end{array} \end{aligned}$$ where $\sigma (X)$ denotes the vector of singular values of $X \in \mathbb{R }^{m\times n}$ , the matrix norm $\Vert \sigma (X)\Vert _{\alpha }$ denotes either the Frobenius, the nuclear, or the $\ell _2$ -operator norm of $X$ , the vector norm $\Vert .\Vert _{\beta }$ denotes either the $\ell _1$ -norm, $\ell _2$ -norm or the $\ell _{\infty }$ -norm; $\mathcal{Q }$ is a closed convex set and $\mathcal{A }(.)$ , $\mathcal{C }(.)$ , $\mathcal{F }(.)$ are linear operators from $\mathbb{R }^{m\times n}$ to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all $\epsilon >0$ , the FALC iterates are $\epsilon $ -feasible and $\epsilon $ -optimal after $\mathcal{O }(\log (\epsilon ^{-1}))$ iterations, which require $\mathcal{O }(\epsilon ^{-1})$ constrained shrinkage operations and Euclidean projection onto the set $\mathcal{Q }$ . Surprisingly, on the problem sets we tested, FALC required only $\mathcal{O }(\log (\epsilon ^{-1}))$ constrained shrinkage, instead of the $\mathcal{O }(\epsilon ^{-1})$ worst case bound, to compute an $\epsilon $ -feasible and $\epsilon $ -optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.  相似文献   

17.
An additive coloring of a graph G is an assignment of positive integers \({\{1,2,\ldots ,k\}}\) to the vertices of G such that for every two adjacent vertices the sums of numbers assigned to their neighbors are different. The minimum number k for which there exists an additive coloring of G is denoted by \({\eta (G)}\) . We prove that \({\eta (G) \, \leqslant \, 468}\) for every planar graph G. This improves a previous bound \({\eta (G) \, \leqslant \, 5544}\) due to Norin. The proof uses Combinatorial Nullstellensatz and the coloring number of planar hypergraphs. We also demonstrate that \({\eta (G) \, \leqslant \, 36}\) for 3-colorable planar graphs, and \({\eta (G) \, \leqslant \, 4}\) for every planar graph of girth at least 13. In a group theoretic version of the problem we show that for each \({r \, \geqslant \, 2}\) there is an r-chromatic graph G r with no additive coloring by elements of any abelian group of order r.  相似文献   

18.
We investigate a class of kernel estimators $\widehat{\sigma}^2_n$ of the asymptotic variance σ 2 of a d-dimensional stationary point process $\Psi = \sum_{i\ge 1}\delta_{X_i}$ which can be observed in a cubic sampling window $W_n = [-n,n]^d\,$ . σ 2 is defined by the asymptotic relation $Var(\Psi(W_n)) \sim \sigma^2 \,(2n)^d$ (as n →? ∞) and its existence is guaranteed whenever the corresponding reduced covariance measure $\gamma^{(2)}_{red}(\cdot)$ has finite total variation. Depending on the rate of decay (polynomially or exponentially) of the total variation of $\gamma^{(2)}_{red}(\cdot)$ outside of an expanding ball centered at the origin, we determine optimal bandwidths b n (up to a constant) minimizing the mean squared error of $\widehat{\sigma}^2_n$ . The case when $\gamma^{(2)}_{red}(\cdot)$ has bounded support is of particular interest. Further we suggest an isotropised estimator $\widetilde{\sigma}^2_n$ suitable for motion-invariant point processes and compare its properties with $\widehat{\sigma}^2_n$ . Our theoretical results are illustrated and supported by a simulation study which compares the (relative) mean squared errors of $\widehat{\sigma}^2_n$ for planar Poisson, Poisson cluster, and hard-core point processes and for various values of n b n .  相似文献   

19.
In contrast to its subalgebra $A_n:=K\langle x_1, \ldots , x_n, \frac{\partial}{\partial x_1}, \ldots ,\frac{\partial}{\partial x_n}\rangle $ of polynomial differential operators (i.e. the n’th Weyl algebra), the algebra ${\mathbb{I}}_n:=K\langle x_1, \ldots ,$ $ x_n, \frac{\partial}{\partial x_1}, \ldots ,\frac{\partial}{\partial x_n}, \int_1, \ldots , \int_n\rangle $ of polynomial integro-differential operators is neither left nor right Noetherian algebra; moreover it contains infinite direct sums of nonzero left and right ideals. It is proved that ${\mathbb{I}}_n$ is a left (right) coherent algebra iff n?=?1; the algebra ${\mathbb{I}}_n$ is a holonomic A n -bimodule of length 3 n and has multiplicity 3 n with respect to the filtration of Bernstein, and all 3 n simple factors of ${\mathbb{I}}_n$ are pairwise non-isomorphic A n -bimodules. The socle length of the A n -bimodule ${\mathbb{I}}_n$ is n?+?1, the socle filtration is found, and the m’th term of the socle filtration has length ${n\choose m}2^{n-m}$ . This fact gives a new canonical form for each polynomial integro-differential operator. It is proved that the algebra ${\mathbb{I}}_n$ is the maximal left (resp. right) order in the largest left (resp. right) quotient ring of the algebra ${\mathbb{I}}_n$ .  相似文献   

20.
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号