首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of the surfactant domains at the interface. A simple model is presented that predicts the basic features of the domain coverage as a function of temperature for the mixed surfactant system from the behavior of the single surfactant systems.  相似文献   

2.
The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (π-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the π-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function.  相似文献   

3.
The respreading of a lung surfactant monolayer at the air-water interface is investigated with broad bandwidth sum frequency generation (BBSFG) spectroscopy. The lung surfactant mixture contains chain perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoylphosphatidylglycerol (POPG), palmitic acid (PA), and KL4 (a 21-residue polypeptide analogue to the surfactant protein SP-B). DPPC-d62 serves as a probe molecule for the spectroscopic investigation. The BBSFG spectra of DPPC-d62 in the lung surfactant mixture are obtained in the C-D stretching region in real-time during film compression and expansion in a Langmuir trough. The BBSFG intensity of the CD3 stretch peak from DPPC-d62 terminal methyl groups is used as a measure of the interfacial density of DPPC-d62 after careful consideration of orientation effects. For the first time, the interfacial loss of DPPC in a complex lung surfactant mixture is quantified. Spectroscopic results reveal that there is an 18% DPPC-d62 interfacial loss during film respreading. However, the surface pressure-area isotherm measurements demonstrate that there is a rather large trough area reduction (37%) during film expansion. The relatively small interfacial loss of DPPC-d62 and the rather large trough area reduction indicate that the respreading of DPPC and non-DPPC components in the lung surfactant is not uniform and a surface refinement process exists during film compression and expansion. This refinement process results in a DPPC-enriched monolayer with a significant depletion of non-DPPC components after film respreading. Implication for replacement surfactant design from this work is discussed.  相似文献   

4.
The interaction between the alkanediyl-alpha,omega-type cationic gemini surfactant, [(C(16)H(33)N(+)(CH(3))(2)(CH(2))(4)N(+)(CH(3))(2)C(16)H(33))2Br(-)], 16-4-16 and the conventional nonionic surfactant [CH(3)(CH(2))(10)CH(2)(OCH(2)CH(2))(6)OH], C(12)E(6) in aqueous medium has been investigated. The critical micelle concentrations of different mixtures have been measured by surface tension using a du Nouy tensiometer in aqueous solution at different temperatures (303, 308, and 313 K). Maximum surface excess (Gamma(max)) and minimum area per molecule (A(min)) were evaluated from a surface tension vs log(10)C (C is concentration) plot. The cmc value of the mixture was used to compute beta(m), the interaction parameter. The beta(sigma), the interaction parameter at the monolayer air-water interface, was also calculated. We observed synergism in 16-4-16/C(12)E(6) system at all concentration ratios. The micelle aggregation number (N(agg)) has been measured using a steady state fluorescence quenching method at a total surfactant concentration approximately 2 mM at 25 degrees C. The micropolarity and the binding constant (K(sv)) of mixed systems were determined from the ratio of intensity of peaks (I(1)/I(3)) of the pyrene fluorescence emission spectrum. The micellar interiors were found to be reasonably polar. We also found, using Maeda's concept, that the chain-chain interactions are very important in this system.  相似文献   

5.
At the air-water interface, interfacial molecular structure, intermolecular interactions, film relaxation and film respreading of model lung surfactant monolayers were studied using vibrational sum frequency generation (VSFG) spectroscopy combined with a Langmuir film balance. Chain-perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoyl-phosphatidylglycerol (POPG), palmitic acid (PA) and tripalmitin were investigated. In the DPPC-d62-PA binary monolayer, PA showed a condensing effect on the DPPC chains. On the contrary, in the DPPC-d62-POPG binary monolayer, POPG showed a fluidizing effect on the DPPC chains. In the ternary monolayer system of DPPC-d62-POPG-PA, the balance between the fluidizing and the condensing effect was also observed. In addition, the film relaxation behavior of DPPC-d62 and the enhanced film stability of DPPC-d62 caused by the addition of tripalmitin were observed. Real-time VSFG was also employed to study the respreading properties of a complex lung surfactant mixture containing DPPC-d62, POPG, PA and KL4 (a mimic of SP-B) peptide, which revealed DPPC enrichment after film compression.  相似文献   

6.
The action mechanism of surfactant protein C (SP-C) in the lung surfactant monolayers is studied. On the basis of the SP-C molecular structure, a detailed interaction model is developed to describe the interaction of phospholipids/SP-C in the lung surfactant monolayers. It is supposed that: (1) in an alveolus monolayer, SP-C molecules are surrounded by phosphatidylglycerol (PG). When the monolayer is compressed, SP-C molecules can promote PG molecules to be squeezed out; (2) during compressing of the monolayer, unsaturated-PG molecules form a collapse pit firstly when liquid-expanded state (LE) components achieve the collapse pressure. Then, SP-C's alpha-helix is attracted by the collapse pit and both alpha-helix and PG molecules are squeezed out speedily. Finally, the squeezed-out matters can form a lipid-protein aggregation in the subphase. The lipid-protein aggregation, in the centre of which, there is the hydrophobic alpha-helix section surrounded by PG molecules; (3) during the monolayer expanding, because of the increasing of the monolayer's surface tension, the structure of the lipid-protein aggregation is disturbed and reinserts into the surface of the monolayer rapidly. On the basis of analyzing the energies change of the squeeze-out process, a mathematical model is obtained to calculate the squeezed-out number of DPPG molecules when a SP-C molecule squeezes out in a monolayer. According to the model, it is concluded that SP-C has the capability to promote the squeeze-out and the reinsertion of most of PG component in an alveolus monolayer, the prediction data agree well with the experimental data.  相似文献   

7.
The effect of adding an alcohol ethoxylate nonionic surfactant (C(18)E(18)) to aqueous solutions of a cationic surfactant, erucyl bis(hydroxyethyl) methylammonium chloride (EHAC,CH(3)(CH(2))(7)(CH)(2)(CH(2))(12)N(+)-(CH(2)CH(2)OH)(2)CH(3)Cl(-)), was studied using small-angle neutron scattering (SANS), steady-state rheology, and cryo-transmission electron microscopy (Cryo-TEM). This cationic surfactant has the ability to self-assemble into giant wormlike micelles in the presence of an electrolyte, such as KCl. In salt-free solutions, the mixture of the two surfactants gave rise to spherical micelles. The scattering curves obtained were fitted with a polydisperse core-shell model combined with a Hayter Penfold potential. The inner and outer radii were found to be dependent on the surfactant ratio. In the presence of KCl, mixed wormlike micelles were formed. However, further addition of C(18)E(18) promoted the breaking of the micellar worms with the appearance of a structure peak in the scattering curves. In addition, it was found that the low shear viscosity is decreased upon addition of the alcohol ethoxylate nonionic surfactant. These findings are in good qualitative agreement with the Cryo-TEM images. The results show that the addition of the nonionic surfactant to the system is a method of controlling the worm length.  相似文献   

8.
9.
Molecular interactions between mycobacterial cell wall lipid, cord factor (CF) and the abundant surfactant lipid, dipalmitoylphosphatidylcholine (DPPC) were investigated using Langmuir monolayers at physiological temperatures (37 degrees C). Surface topography of the films was visualized by atomic force microscopy (AFM). Thermodynamic behavior of the mixed monolayers was evaluated by investigating the molecular area excess, excess Gibbs free energy of mixing and maximum compressibility modulus (SCM(max)). Cord factor formed immiscible and thermodynamically unstable monolayers with DPPC. Monolayer presence of cord factor altered the physical state of DPPC monolayers from liquid condensed to liquid expanded with the lowering of SCM(max) from 160 to 40 mN/m, respectively. AFM imaging exhibited smooth homogenous surface topography of DPPC films which in the presence of cord factor was markedly altered with the appearance of aggregates and increased surface roughness. The results highlight the capacity of cord factor to disturb DPPC monolayer organization and structure. Interfacial presence of cord factor results in DPPC monolayer fluidization. Lung surfactant function is attributed to its ability to form well packed low compressibility films. Such molecular interactions suggest a dysfunction of lung surfactant in pulmonary tuberculosis due to surfactant monolayer fluidization.  相似文献   

10.
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.  相似文献   

11.
We report on the interactions between a 21-mer quadruplex-forming oligonucleotide bearing human telomere sequence of dG(3)(T(2)AG(3))(3) (G4 DNA) and a positively charged dioctadecyldimethylammonium bromide (DODAB) monolayer at the air-aqueous interface, studied by surface film balance measurements. In the presence of G4 DNA, the π-A isotherm of the cationic Langmuir film shifted to lower molecular areas when compared with the reference isotherm recorded on the subphase containing only 50 mM triethylamine-acetate (TEAA) buffer. The presence of quadruplex-stabilizing metal cations (K(+) or Na(+)) further affected profiles of π-A isotherms. Further insight into processes related to the G4 DNA-monolayer interactions was provided by recording time profiles of the surface pressure of monolayer at a constant mean molecular area. In these experiments G4 DNA and/or metal ions were sequentially injected under the monolayer surface. Results indicated that multistranded assemblies of G4 DNA were formed at the monolayer interface even in the absence of metal ions, which suggested that the charged cationic surface of Langmuir monolayer induced aggregation of guanine-rich DNA strands. The presence of sodium and potassium ions inhibited formation of multi-stranded assemblies through the competitive G-quadruplex formation but to different extent that might be related to the differences in stability and topology of both quadruplexes.  相似文献   

12.
The surface behaviour of spread dipalmitoyl phosphatidyl choline (DPPC), lung surfactant protein C (SP-C), and their mixtures were characterised using a captive bubble surfactometer. The surface tension was determined by using axisymmetric bubble shape analysis. Surface dilatational rheological behaviour was characterised by sinusoidal oscillation of the bubble volume and at frequencies 0.006-0.025 Hz. The pi/A isotherms of DPPC, SP-C, and their mixtures were described with a generalised equation of state. Monolayer cycling of mixed DPPC/SP-C layers yields isotherms with a plateau in the range of 50-53 mN/m. When the surface pressure becomes higher SP-C is squeezed out of the film, but it re-enters the film upon expansion. Surface dilatational elasticities of DPPC films had a maximum at about 30 mN/m. At higher surface pressures, the films became brittle and the elasticity decreased. A slightly pronounced maximum was found at a surface pressure exceeding 55 mN/m. The dilatational viscosity had two distinct maxima, corresponding with those in the elasticity curves, i.e. one before the minimum area demand, and one in the range of over-compression. This was explained by the formation of a second ordered complex structure in the range of film over-compression. SP-C films show continuously increasing dilatational elasticities and viscosities with a maximum at f approximately 0.02 Hz. Mixed monolayers, DPPC+2 mol% SP-C, had dilatational elasticities increasing with surface pressure. In contrast to DPPC alone, an elasticity maximum appeared in the range of the squeeze out plateau. The dilatational viscosity had two distinct maxima as observed for DPPC, whereas the maximum before the squeeze out plateau is very broad like that of SP-C. The viscosity decreased for frequencies higher 0.02 Hz favouring elastic properties of the film. Our data provide experimental evidence that SP-C mixed with DPPC yield higher elasticities and viscosities as compared with films formed by the single components. This behaviour is likely to support breathing cycles, especially for the turn from inspiration to expiration and vice versa.  相似文献   

13.
A polymerizable cationic gemini surfactant, [CH(2)=C(CH(3))COO(CH(2))(11)N(+)CH(3))(2)CH(2)](2).2Br(-), 1 has been synthesized and its basic interfacial properties were investigated (in water and in the presence of 0.05 M NaBr). For comparison, the properties of monomeric surfactant corresponding to 1, CH(2)=C(CH(3))COO(CH(2))(11)N(+)(CH(3))(3).Br(-), 2, were also investigated. Parameters studied include cmc (critical micelle concentration), C(20) (required to reduce the surface tension of the solvent by 20 mN/m), gamma(cmc) (the surface tension at the cmc), Gamma(cmc) (the maximum surface excess concentration at the air/water interface), A(min) (the minimum area per surfactant molecule at the air/water interface), and cmc/C(20) ratio (a measure of the tendency to form micelles relative to adsorb at the air/water interface). For the polymerizable gemini surfactant, 1, the methacryloxy groups at the terminal of each hydrophobic group in a molecule have no contact with the air/water interface in the monolayer, whereas for the corresponding monomeric surfactant, 2, the methacryloxy group contacts at the interface forming a looped configuration like a bolaamphiphile. Polymerized micelles of the gemini surfactant are fairly small monodisperse and spherical particles with a mean diameter of 3 nm.  相似文献   

14.
The properties of the complex monolayers composed of cationic gemini surfactants, [C(18)H(37)(CH(3))(2)N(+)-(CH(2))(s)-N(+)(CH(3))(2)C(18)H(37)],2Br(-) (18-s-18 with s = 3, 4, 6, 8, 10 and 12), and ds-DNA or ss-DNA at the air/water interface were in situ studied by the surface pressure-area per molecule (π-A) isotherm measurement and the infrared reflection absorption spectroscopy (IRRAS). The corresponding Langmuir-Blodgett (LB) films were also investigated by the atomic force microscopy (AFM), the Fourier transform infrared spectroscopy (FT-IR), and the circular dichroism spectroscopy (CD). The π-A isotherms and AFM images reveal that the spacer of gemini surfactant has a significant effect on the surface properties of the complex monolayers. As s ≤ 6, the gemini/ds-DNA complex monolayers can both laterally and normally aggregate to form fibril structures with heights of 2.0-7.0 nm and widths of from several tens to ~300 nm. As s > 6, they can laterally condense to form the platform structure with about 1.4 nm height. Nevertheless, FT-IR, IRRAS, and CD spectra, as well as AFM images, suggest that DNA retains its double-stranded character when complexed. This is very important and meaningful for gene therapy because it is crucial to maintain the extracellular genes undamaged to obtain a high transfection efficiency. In addition, when s ≤ 6, the gemini/ds-DNA complex monolayers can experience a transition of DNA molecule from the double-stranded helical structure to a typical ψ-phase with a supramolecular chiral order.  相似文献   

15.
Surface properties of foam films formed from aqueous dispersions of dipalmitoyl-phosphatidylcholine (DPPC) and from solutions of a phospholipid fraction of lung surfactant (TPL) are studied employing the foam film method. Experiments are carried out within a wide range of NaCl concentrations (Cel) and the ranges of Cel determining formation of common films (CF), common black films (CBF) and bilayer Newton black films (NBF) are found. The thickness (h) of the CF and CBF decreases with the increase of Cel until the critical electrolyte concentrations (Cel, cr) is reached. The determined Cel, cr that characterize the transition to NBF show that Cel, cr of the TPL films is an order of magnitude higher than that of the DPPC films. The measured h of the TPL films is higher than that of the DPPC films in the whole Cel range. Besides, only the h(Cel) curve of the DPPC films outlines a metastable Cel range where both CF and NBF are obtained. Both the h(Cel) curves and the direct measurements of the disjoining pressure isotherms of the DPPC films (Π(h) isotherms) demonstrate the role of electrostatic repulsive forces for the stability of the phospholipid films The obtained results are compared with the DLVO theory equations and the evaluated potentials of the diffuse electric layer φ0  20 mV for the DPPC films and φ0  100 mV for TPL films show the strong effect of the charged phospholipids in the TPL mixture on the electric properties at the film interfaces.  相似文献   

16.
Two kinds of highly ordered mesoporous silica materials (FDU-11, FDU-13) with novel three-dimensional (3-D) tetragonal and orthorhombic structures were synthesized by using tetra-headgroup rigid bolaform quaternary ammonium surfactant [(CH(3))(3)NCH(2)CH(2)CH(2)N(CH(3))(2)CH(2)(CH(2))(11)OC(6)H(4)C(6)H(4)O(CH(2))(11)CH(2)N(CH(3))(2)CH(2)CH(2)CH(2)N(CH(3))(3).4Br] (C(3-12-12)(-)(3)) as a template under alkaline conditions. High-resolution transmission electron microscopy (HRTEM), small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD) show that mesoporous silica FDU-11 has primitive tetragonal P4/mmm structure with cell parameters a = b = 8.46 nm, c = 5.22 nm, and c/a ratio = 0.617. N(2) sorption isotherms show that calcined FDU-11 has a high BET surface area of approximately 1490 m(2)/g, a uniform pore size of approximately 2.72 nm, and a pore volume of approximately 1.88 cm(3)/g. Mesoporous silica FDU-13 has primitive orthorhombic Pmmm structure. The cell parameters are a = 9.81, b = 5.67, and c = 3.66 nm. N(2) sorption isotherms show that calcined FDU-13 has a high BET surface area of 1210 m(2)/g, a uniform mesopore size of approximately 1.76 nm, and a large pore volume of approximately 1.83 cm(3)/g. Such low symmetries for 3-D mesostructures (tetragonal and orthorhombic system) have not been observed before even in amphiphilic liquid crystals, which maybe resulted from an oblate aggregation of the bolaform surfactant and its strong electrostatic interaction with inorganic precursor. A probable mechanism has been proposed for the formation of such a 3-D low symmetrical mesostructure. These results will further extend the synthesis of mesoporous materials and may open up new opportunities for their new applications in catalysis, separation, and nanoscience.  相似文献   

17.
We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer.  相似文献   

18.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

19.
The aggregate states of partially fluorinated gemini surfactant [(CF3)2CF(CF2)2(CH2)10N(CH3)2]2(CH2)6Br2 (C(F)(5)C10-C6-C10C(F)(5)) on silica surface were investigated with atomic force microscopy (AFM) and water contact angle (CA) measurement by analyzing the effects of bulk concentration and adsorption time on stack state. On surfactant-adsorbed silica surfaces, there was a flat surface layer interspersed with some scattering surfactant aggregates. In the case of short adsorption times, the aggregates would be hemisphere. In the case of long adsorption times, the aggregates would be present in the form of bilayers. With the increase of bulk concentration, the adsorbed amount was enlarged and the surface layer became more compact. The formation of patchy bilayer aggregates indicated the saturation of the surface layer. Furthermore, organic solvent effects on the aggregate state of the surfactant on a silica surface were studied with four organic solvents, including n-hexane, dehydrated ethanol, 1,1,2-trichloro-1,2,2-trifluoroethane, and toluene. With the treatment of different organic solvents, the hemisphere aggregates on the surface layer can rearrange into spherical bilayer, rodlike monolayer, and branched rodlike monolayer aggregates, respectively. The polarity of solvents and affinity of organic solvents for surfactant molecules may have a great impact on the stack state of the fluorinated gemini surfactant molecules.  相似文献   

20.
Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号