首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The synthesis and characterisation of two new sets of non-symmetric liquid crystal dimers is reported, the 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexanes (CB6OABX) and 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yloxy)pentanes (CBO5OABX). The terminal substituents are methyl, methoxy, butyl, butyloxy, nitrile and nitro. All the CB6OABX dimers exhibit twist-bend nematic (NTB) and nematic (N) phases. The CBO5OABX dimers also all show an N phase but only the butyl and butyloxy homologues exhibit the NTB phase. The transitional behaviour of the non-symmetric dimers is compared to that of the corresponding symmetric dimers, the 1,5-bis(4-substitutedazobenzene-4′-yloxy)pentanes (XABO5OABX) and either 1,7-bis(4-cyanobiphenyl-4′-yl)heptane or 1,5-bis(4-cyanobiphenyl-4′-yloxy)pentane. The XABO5OABX dimers all show a nematic phase and in addition, the butyl homologue exhibits a smectic A phase. The difference in transitional behaviour between the CB6OABX and CBO5OABX dimers is attributed to the difference in their molecular shapes arising from different bond angles between the para axis of the cyanobiphenyl unit and the first bond in the spacer. Specifically, the all-trans conformation of a CBO5OABX dimer is more linear than that of the corresponding CB6OABX dimer. Differences within each set of dimers are attributed to changes in the average molecular shape and the strength of the mixed mesogen interaction on varying the terminal group. Crystal structures are reported for CB6OABOMe, CBO5OABNO2 and MeOABO5OABOMe.  相似文献   

2.
A selection of pyrene-based liquid crystal dimers have been prepared, containing either methylene-ether or diether linked spacers of varying length and parity. All the diether linked materials, CBOnO.Py (n=5, 6, 11, 12), exhibit conventional nematic and smectic A phases, with the exception of CBO11O.Py which is exclusively nematic. The methylene-ether linked dimer, CBnO.Py, with an even-membered spacer (n=5) was solely nematogenic, but odd-members (n=6, 8, 10) exhibited both nematic and twist-bend nematic phases. Replacement of the cyanobiphenyl fragment by cyanoterphenyl giving CT6O.Py, gave elevated melting and nematic-isotropic transition temperatures, and SmA and SmCA phases were observed on cooling the nematic phase. Intermolecular face-to-face associations of the pyrene moieties drive glass formation, and all these materials have a glass transition temperature at or above room temperature. The stability of the glassy twist-bend nematic phase allowed for its study using AFM, and the helical pitch length, PTB, was measured as 6.3 and 6.7 nm for CB6O.Py and CB8O.Py, respectively. These values are comparable to the shortest pitch of a twist-bend nematic phase measured to date.  相似文献   

3.
ABSTRACT

Zigzag patterns were successfully generated in the twist-bend nematic (NTB) phase of 1-(4-cyanobiphenyl-4′-yl)-6-(4-cyanobiphenyl-4′-yloxy)hexane (CB6OCB) via simple surface treatment. A detailed microscopy study using polarised optical microscopy and fluorescence confocal polarising microscopy was performed to observe the director arrangement in the zigzags, where distinctive periodic patterns were found to be aligned perpendicular to the rubbing direction. These patterns originate from the structural instability and generation of splay deformation with focal conic domain-like structures that are typically found in smectic phases, revealing that the NTB phase has physical properties similar to those of the smectic phase. Observation of these unusual zigzag patterns in the NTB phase opens an avenue for use of this phase in potential applications such as optical modulators and gratings.  相似文献   

4.
Eleven members of the homologous series of liquid crystal dimers, the α,ω-bis(4-cyanobiphenyl-4′-yl) alkanedioates, have been synthesised and their transitional properties characterised. These dimers consist of two cyanobiphenyl units connected by an alkyl spacer attached via ester linkages. All eleven members exhibit exclusively nematic behaviour. The nematic–isotropic transition temperatures, TNI, and associated entropy changes, ?SNI/R, exhibit pronounced alternations as the length and parity of the spacer is varied; this is characteristic behaviour of liquid crystal dimers. The transitional properties of the ester-linked dimers are compared with the corresponding materials having either ether, methylene or carbonate linkages between the spacer and mesogenic units. For short spacer lengths and both odd- and even-membered dimers, the ester-linked materials show the highest values of TNI and the methylene-linked the lowest. For longer spacer lengths, TNI of the carbonate-linked dimers fall between those of the corresponding ester- and ether-linked dimers. The ether-linked materials show the largest alternation in ?SNI/R on varying spacer length and the carbonate-linked dimers the lowest. This behaviour is interpreted in terms of the molecular geometry and it is suggested that the ether- and ester-linked odd-membered dimers have rather similar shapes. A phase diagram constructed using binary mixtures of the pentyl member of this ester-linked series and the known twist-bend nematogen, 1,7-bis(4-cyanobiphenyl-4′-yl)heptane (CB7CB), is presented. The twist-bend nematic–nematic transition temperature of the mixtures shows a striking convex curvature as the concentration of CB7CB is decreased, and so it is not possible to estimate a virtual twist-bend nematic–nematic transition temperature for the ester-linked material.  相似文献   

5.
ABSTRACT

The synthesis and characterisation of two series of cyanobiphenyl-based liquid crystal dimers containing sulfur links between the spacer and mesogenic units, the 4?-[1,ω-alkanediylbis(thio)]bis-[1,1?-biphenyl]-4-carbonitriles (CBSnSCB), and 4?-({ω-[(4?-cyano[1,1?-biphenyl]-4-yl)oxy]alkyl}thio)[1,1?-biphenyl]-4-carbonitriles (CBSnOCB) are described. The odd members of both series show twist-bend nematic and nematic phases, whereas the even members exhibit only the nematic phase. An analogous cyanoterphenyl-based dimer, 34-{6-[(4?-cyano[1,1?-biphenyl]-4-yl)thio]-hexyl}[11,21:24,31-terphenyl]-14-carbonitrile (CT6SCB), is also reported and shows enantiotropic NTB and N phases. The transitional properties of these dimers are discussed in terms of molecular curvature, flexibility and biaxiality. The same molecular factors also influence the birefringence of nematic phases. Resonant X-ray scattering studies of the twist-bend nematic phase at both the carbon and sulfur absorption edges were performed, which allowed for the determination of critical behaviour of the helical pitch at the transition to the nematic phase, the behaviour was found to be independent of molecular structure. It was also observed that despite the different molecular bending angle and flexibility, in all compounds the helical pitch length far from the N-NTB transition corresponds to 4 longitudinal molecular distances.  相似文献   

6.
ABSTRACT

Recently, there has been a surge of interest in mesogens exhibiting the twist-bend nematic (NTB) phase that is shown to be chiral even though formed by effectively achiral molecules. Although it now seems to be clear that the NTB phase in the bulk is formed by degenerate domains having opposite handedness, the presence of a supramolecular heliconical structure proposed in the Dozov model has been contradicted by the Hoffmann et al. model in which the heliconical arrangement is replaced by a polar nematic phase. The evidence in support of this is that the quadrupolar splitting tensor measured in various experiments is uniaxial and not biaxial as expected for the twist-bend nematic structure. In this debate, among other evidence, the molecular translational diffusion, and its magnitude with respect to that in the nematic phase above the NTB phase, has also been invoked to eliminate or to confirm one model or the other. We attempt to resolve this issue by reporting the first measurements of the translational self-diffusion coefficients in the nematic and twist-bend nematic phases formed 1″,7″-bis-4-(4′-cyanobiphenyl-4′-yl) heptane (CB7CB). Such measurements certainly appear to resolve the differences between the two models in favour of that for the classic twist-bend nematic phase.  相似文献   

7.
ABSTRACT

The synthesis and characterisation of two homologous series of non-symmetric dimers are reported, the 1-(4-methoxybiphenyl-4?-yl)-6-(4-alkylanilinebenzylidene-4?-oxy)hexanes (MeOB6O.m, m = 1–10) and 1-(4-methoxybiphenyl-4?-yl)-6-(4-alkyloxyanilinebenzylidene-4?-oxy)hexanes (MeOB6O.Om, m = 1–9). All 10 members of the MeOB6O.m series exhibit the conventional nematic phase. At lower temperatures, the members with = 1–7 formed the twist-bend nematic phase, NTB, whereas for = 8–10 smectic behaviour replaced the NTB phase. All nine members of the MeOB6O.Om series also show the conventional nematic phase and for = 1–3, a strongly monotropic NTB phase is also observed. The alkyloxy terminated dimers show the higher values of TNI and TNTB N . For both series, the values of TNI and TNTB N show a modest alternation and in the same sense as m is increased. These observations suggest that the spatial uniformity of molecular curvature is important in driving the formation of the NTB phase. The observation of smectic behaviour is attributed to the molecular inhomogeneity arising from the long terminal alkyl chain driving microphase separation. The transitional behaviour of these series is compared to those of the corresponding cyanobiphenyl-based series and overarching observations discussed.  相似文献   

8.
ABSTRACT

Two series of bimesogens with phenyl benzoate mesogenic units were prepared: one series having a heptamethylene spacer and the other a pentamethylene spacer with two ether-linking groups. These materials were prepared to provide experimental backing to the widely held hypothesis that methylene-linked bimesogens are more likely to exhibit the twist-bend nematic mesophase than their ether-linked counterparts. Several of the methylene-linked materials exhibited nematic and NTB mesophases, whereas the analogous ether-linked materials gave only nematic phases albeit with significantly higher clearing points. Virtual N–NTB transition temperatures for both methylene- and ether-linked bimesogens were extrapolated by constructing binary phase diagrams with the well-studied twist-bend material CB9CB. Contrary to our expectations these virtual transition temperatures were in most cases higher for the ether-linked bimesogens than in the analogous methylene compounds, this runs counter to reported theories and hypotheses that the incorporation of ether-linking groups should serve to destabilise the NTB phase.  相似文献   

9.
The twist-bend nematic, NTB, phase has been observed for chiral materials in which chirality is introduced through a branched 2-methylbutyl terminal tail. The chiral twist-bend nematic phase, N*TB, is completely miscible with the NTB phase of the standard achiral material, CB6OCB. The N*TB phase exhibits optical textures with lower birefringence than those observed for the achiral NTB phase, suggesting an additional mechanism of averaging molecular orientations. The N*−N*TB transition temperatures for the chiral materials are higher than the NTB−N transition temperatures seen for the corresponding racemic materials. This suggests the double degeneracy of helical twist sense in the phase is removed by the intrinsic molecular chirality. A square lattice pattern is observed in the N* phase over a temperature range of several degrees above the N*TB–N phase transition, which may be attributed to a non-monotonic dependence of the bend elastic constant.  相似文献   

10.
ABSTRACT

We have studied a mixture of the twist-bend nemogenic dimer CB7CB with rod-like nematic molecules, which exhibits nematic (N) and twist-bend nematic (NTB) phases and a very large biphasic coexistence range. At the N-NTB transition, we observe the nucleation of highly anisometric NTB droplets which are very similar to the classic smectic A (SmA) bâtonnets. These observations confirm the recently proposed close analogy between the NTB and SmA phases, on the basis of their identical macroscopic symmetry. As for their smectic analogues, the NTB bâtonnets are fluid in two dimensions; they easily merge when brought into contact and they are solid-like in that they did not flow along their optic axis. The observed fluidity and low viscosity show that the NTB phase is indeed a nematic phase, i.e. an anisotropic fluid, rather than a soft crystal or glassy state. Unlike their smectic analogues, the NTB bâtonnets have almost perfect symmetry of revolution and the axis of the NTB helix is uniformly aligned parallel to the long axis of the bâtonnet. The large aspect ratio of the bâtonnets, typically ≈ 10–30, indicates a very strong anisotropy of the N-NTB interfacial energy, W2/W0 ≈ 200–2000, and suggests that the anchoring energy differs from the usual Rapini–Papoular form.  相似文献   

11.
《Liquid crystals》2012,39(13-14):2102-2114
ABSTRACT

The synthesis and characterisation of a new set of azobenzene-based non-symmetric liquid crystal dimers, the 1-(4-substitutedazobenzene-4?-yloxy)-6-(4-methoxybiphenyl-4?-yl)hexanes (MeOB6OABX), that exhibit the twist-bend nematic phase, NTB, is described. The terminal substituents are methyl, methoxy, ethyl, butyl, butoxy, and nitrile. All six dimers exhibit both the NTB and conventional nematic, N, phases. The identification of the NTB phase was performed using polarised light microscopy and confirmed for binary mixtures with a standard twist-bend nematogen 1,7-bis-4-(4?-cyanobiphenyl) heptane (CB7CB). The transitional behaviour of the MeOB6OABX dimers is compared with that of the corresponding ether-linked 1-(4-substitutedazobenzene-4?-yloxy)-6-(4-methoxybiphenyl-4?-yloxy)pentanes, MeOBO5OABX, all of which exhibit a conventional nematic phase. In addition, the nitrile-substituted MeOBO5OABCN shows the NTB phase. The behaviour of these non-symmetric dimers is also compared to that of the corresponding symmetric dimers. Differences in the transitional properties between these sets of new materials are accounted for in terms of not only molecular shape but also other factors including the strength of the mixed mesogen interaction.  相似文献   

12.
This paper describes a detailed study of the nematic (N)-isotropic (I) phase transition in the homologous series of liquid crystal dimers, the α-(4-cyanobiphenyl-4?-oxy)-ω-(1-pyreniminebenzylidene-4?-oxy)alkanes (CBOnO.Py) by means of calorimetric and dielectric measurements as a function of temperature. It is concluded that for this transition, the latent heat or the entropy change decreases as the chain length of the odd dimers decreases, and this decrease is consistent with the observed tricritical behaviour.  相似文献   

13.
ABSTRACT

The characteristics of the twist-bend nematic (NTB) phase of an achiral asymmetrical rigid bent-core liquid crystal (LC), the ends of which are terminated by symmetric alkyl chains, are reported. The nematic–nematic phase transition and its properties are studied by differential scanning calorimetry (DSC), polarising microscopy and the electro-optic techniques. Large domains of opposite handedness are observed in the absence of the external field in the NTB phase. Another set of periodic striped pattern consisting of domains with sharp boundaries is formed when a high-frequency electric field with a magnitude above its threshold is applied across a planarly aligned cell. The neighbouring domains are of opposite chirality. The temperature dependence of the heliconical angle θ0 is determined from the birefringence measurements using Haller’s extrapolation technique. This material shows lower values of the heliconical angle (~9.3° at a temperature of 155°C within the NTB phase) when compared with the previously reported dimer-based twist-bend nematic LCs (31°±3°).  相似文献   

14.
C. Meyer 《Liquid crystals》2016,43(13-15):2144-2162
ABSTRACT

The recently discovered twist-bend nematic phase, NTB, has short-pitched heliconical structure with doubly degenerate handedness. In contrast to the classic nematic, in the NTB phase the director is spontaneously distorted, resulting in unusual elastic properties. The response of the NTB phase to external stimuli, like chiral doping or applied fields might provide further information about its structure and can find utilisation in practical applications. Here, the NTB behaviour is theoretically investigated under chiral doping and strong electric fields. We show that the chiral doping removes the NTB degeneration and modifies the conical tilt angle, leaving the pitch unchanged. Thus, the NTB helical twisting power is very high and strongly non-linear. Under electric field, we consider separately the ferroelectric, flexoelectric and dielectric couplings. We show that the experiments reported so far disagree with the ferroelectric behaviour, indicating that the NTB phase is not spontaneously polarised. On the contrary, the observed polar effects fit well with the flexoelectric coupling, confirming the degenerated heliconical structure of the phase. Under very strong fields, we predict a second-order twist-bend nematic – nematic phase transition due to the dielectric torque on the director.  相似文献   

15.
Herein we report a comprehensive study on novel carbonyl- and ethenyl-linked symmetric dimers that combine synthesis, mesomorphic properties and molecular modelling. The study has been focused on the impact of geometry imposed by the linkage group on the incidence of the twist-bend nematic (NTB) phase. Comparison of the mesomorphic properties of these two series complemented with computational studies of conformational space around the linkage group points molecular curvature and intramolecular torsion plays important role in the appearance of the NTB phase and can be regarded as the basic structural requirements for design of new twist-bend nematogen materials.  相似文献   

16.
ABSTRACT

One of the current challenges in liquid crystal science is to understand the molecular factors leading to the formation of the intriguing twist-bend nematic phase (NTB) and determine its properties. During our earlier hunt for the NTB phase created on cooling directly from the isotropic phase and not the nematic phase, we had prepared 30 symmetric liquid crystal dimers. These had odd spacers and methylene links to the two mesogenic groups; desirable but clearly not essential features for the formation of the NTB. Here, we report the phases that the dimers exhibit and their transition temperatures as functions of both the lengths of the spacer and the terminal chains. In addition we describe the transitional entropies, their optical textures, the X-ray scattering patterns and the 2H NMR spectra employed in characterising the phases. All of which may lead to important properties of the twist-bend nematic phase.  相似文献   

17.
ABSTRACT

The synthesis and characterisation of a range of non-symmetric liquid crystal dimers designed to exhibit the twist-bend nematic phase is reported. Beginning with 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane, each nitrile group is exchanged systematically for a methoxy group. The behaviour of these dimers is interpreted in terms of their bent shape being the predominant driving force for the formation of the twist-bend nematic phase, and the small differences between the twist-bend nematic–nematic transition temperatures are attributed to the differences between the interaction strength parameters of the mesogenic units. The 4-alkyloxyphenyl 4-[6-(4′-cyanobiphenyl-4-yl)hexyloxy]benzoates with ethyl, butyl, hexyl and octyl chains show the twist-bend nematic phase, whereas the corresponding 4-alkyloxyphenyl 4-[5-(4′-cyanobiphenyl-4-yloxy)pentyloxy]benzoates do not. This difference in behaviour is attributed to the more bent structure of the former. Increasing the terminal chain length initially decreases the twist-bend nematic–nematic transition temperature and this suggests that the chain disrupts the interactions between the mesogenic units. Subsequent increases in chain length have a smaller effect suggesting that the chain can be accommodated within an intercalated arrangement. The transitional behaviour of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-butyloxybiphenyl-4′-yl) hexane is compared to that of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-((S)-2-methyl)butyloxybiphenyl-4′-yl) hexane, and it is shown that chain branching strongly destabilises the twist-bend nematic phase. This is attributed to difficulties associated with packing the dimers.  相似文献   

18.
ABSTRACT

The paper reviews assignment of the low-temperature nematic phase observed in simple bimesogenic or dimeric systems based on cyanobiphenyls and difluoroterphenyls to the twist-bend nematic phase, NTB, using a range of experimental techniques. These include DSC, X-rays, Polarising Microscopy, electro-optics, birefringence and measurements of the electroclinic effect arising from flexoelectricity. An emphasis is laid on the observations of the chiral domains of opposite handedness at zero field in an otherwise achiral liquid crystalline system in this phase. These observations are a direct consequence of the structure of the twist-bend phase predicted by Ivan Dozov for achiral bent core molecules. The paper reviews the electro-optic phenomena and the observed electroclinic effect and how these observations assign it as the NTB phase. Results of the nanoscale helical pitch measurements using freeze-fracture microscopy are reviewed and discussed briefly. Results of the measurements of elastic constants especially close to the N–NTB transition are also reviewed.  相似文献   

19.
20.
ABSTRACT

The discovery of the oblique chiral (or, the twist-bend, NTB) nematic phase predicted for bent-core mesogens has engendered much interest due to its unique structure and physical properties, and the possibility of use in the next generation of fast electro-optic technology. Bimesogenic calamitic as well as bent-core mesogens are found to form the NTB phase. Here, we report direct measurements of the temperature dependence of the conical tilt and the evidence of volcano-like orientational distribution of molecules in the NTB phase. Optical and x-ray scattering investigations of two single-component calamitic bimesogens and their mixtures show that, while the Maier–Saupe orientational distribution function (ODF) is valid for the higher temperature nematic phase, a generalised expansion in terms of even Legendre functions is needed for the NTB phase. Temperature dependence of the ODFs and the order parameters 〈P2(cosβ)〉, 〈P4(cosβ)〉, and 〈P6(cosβ)〉 has been measured in both phases. The parameters 〈P2(cosβ)〉 and 〈P4(cosβ)〉 increase/decrease in the N/NTB phase with decreasing temperature, while 〈P6(cosβ)〉 remains vanishingly small for all samples. The value of 〈P4(cosβ)〉 becomes negative in the NTB phase confirming a conical distribution of molecules as they follow a helical trajectory keeping the local director tilted at an angle α wrt the macroscopic director. The heliconical tilt calculated from ODFs, exhibits a power law behaviour with temperature, vanishing at the transition to the N phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号