首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As alternative hydrophobic adsorbent for DNA adsorption, supermacroporous cryogel disks were synthesized via free radical polymerization. In this study, we have prepared two kinds of cryogel disks: (i) poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐l ‐tryptophan) [p(HEMA‐MATrp)] cryogel containing specific hydrophobic ligand MATrp; and (ii) monosize p(HEMA‐MATrp) particles synthesized via suspension polymerization embedded into p(HEMA) cryogel structure to obtain p(HEMA‐MATrp)/p(HEMA) composite cryogel disks. These cryogel disks containing hydrophobic functional group were characterized via swelling studies, Fourier transform infrared spectroscopy, elemental analysis, surface area measurements and scanning electron microscopy. DNA adsorption onto both p(HEMA‐MATrp) cryogel and p(HEMA‐MATrp)/p(HEMA) composite cryogels was investigated. Maximum adsorption of DNA on p(HEMA‐MATrp) cryogel was found to be 15 mg/g polymer. Otherwise, p(HEMA‐MATrp)/p(HEMA) composite cryogels significantly increased the DNA adsorption capacity to 38 mg/g polymer. Composite cryogels could be used repeatedly without significant loss on adsorption capacity after 10 repetitive adsorption–desorption cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This study proposed the development of a monolithic supermacroporous affinity column for direct capture of lactoperoxidase, a glycoprotein present in milk, whey, and colostrum, with several applications due to its wide antimicrobial activity. A poly(acrylamide)-based cryogel was produced by radical co-polymerization of monomers in frozen aqueous solution and activated with p-aminobenzenesulfonamide as a ligand for specific interaction with the lactoperoxidase. The axial liquid dispersion coefficients at different liquid flow rates were determined by measuring residence time distributions using the tracer pulse-response method. The axial dispersion coefficient was low and the height equivalent to theoretical plate was not dependent on the flow velocity. The adsorptive capacity of affinity cryogel was studied as a function of flow velocity and the best condition was 0.9 cm/min. The response surface methodology was applied to optimize the capture of the enzyme, as a function of pH and salt concentration. Higher purification factor value was found at a salt concentration of 80 mmol/L and pH of 8.0 (p < 0.05). There was no influence of the variables under study on the yield (p > 0.05). The results indicated that affinity cryogel is a promising chromatography support for the use in high-throughput one-step purification of lactoperoxidase from whey.  相似文献   

3.
Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni(2+) adsorbent had the greatest capture capacity (6.7 x 10(8) IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.  相似文献   

4.
A new type of supermacroporous, monolithic, cryogel affinity adsorbent was developed, allowing the specific capture of urokinase from conditioned media of human fibrosarcoma cell line HT1080. The affinity adsorbent was designed with the objective of using it as a capture column in an integrated perfusion/protein separation bioreactor setup. A comparative study between the utility of this novel cryogel based matrix and the conventional Sepharose based affinity matrix for the continuous capture of urokinase in an integrated bioreactor system was performed. Cu(II)-ion was coupled to epoxy activated polyacrylamide cryogel and Sepharose using iminodiacetic acid (IDA) as the chelating ligand. About 27-fold purification of urokinase from the conditioned culture media was achieved with Cu(II)-IDA-polyacrylamide cryogel column giving specific activity of about 814 Plough units (PU)/mg protein and enzyme yields of about 80%. High yields (95%) were obtained with Cu(II)-IDA-Sepharose column by virtue of its high binding capacity. However, the adsorbent showed lower selectivity as compared to cryogel matrix giving specific activity of 161 PU/mg protein and purification factor of 5.3. The high porosity, selectivity and reasonably good binding capacity of Cu(II)-IDA-polyacrylamide cryogel column make it a promising option for use as a protein capture column in integrated perfusion/separation processes. The urokinase peak pool from Cu(II)-IDA-polyacrylamide cryogel column could be further resolved into separate fractions for high and low molecular weight forms of urokinase by gel filtration chromatography on Sephacryl S-200. The selectivity of the cryogel based IMAC matrix for urokinase was found to be higher as compared to that of Cu(II)-IDA-Sepharose column.  相似文献   

5.
The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity.  相似文献   

6.
Poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) [poly(HEMA-GMA)] cryogel was synthesized by cryopolymerization technique at frozen temperature. Iminodiacetic acid (IDA) was then attached covalently to the cryogel as a chelating agent. Then, poly(HEMA-GMA)-IDA cryogel was chelated with Ni(II) ions and this novel metal affinity support was used for adsorption of urease from its aqueous solution. Urease adsorption experiments were carried out in a continuous system by using a peristaltic pump. Maximum urease adsorption onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was found to be 11.30 mg/g cryogel at pH 5.0 acetate buffer and in 25 °C medium temperature. Urease adsorption capacity decreased with increasing ionic strength and increasing chromatographic flow rate. Adsorption kinetics of urease onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was also investigated and it was found that Langmuir adsorption model is applicable for this adsorption study. This novel immobilized metal affinity chromatography support was used 10 times without any decrease at their adsorption capacity. It was also observed that urease enzyme was repeatedly adsorbed and desorbed without significant lost in enzymatic activity.  相似文献   

7.
In this work, based on the structural characteristics of bio‐membrane molecules, a novel type of high‐performance hydrophobic interaction chromatography stationary phase was prepared using cholesterol as a ligand. Investigating the separation performance of this stationary phase, the effect of pH and salt concentration of the mobile phase on the retention time, the absorption capacity, and the hydrophobic ability revealed that this stationary phase had a high loading capacity and moderate hydrophobic interactions compared with four different hydrophobic interaction chromatography stationary phase ligands. Five types of standard proteins could be baseline separated with a great selection for protein separation. When 3.0 M urea was added to the mobile phase, it could be refolded with simultaneous purification of denatured lysozyme by one‐step chromatography. The mass recovery of lysozyme reached 89.5%, and the active recovery was 96.8%. Compared with traditional hydrophobic interaction chromatography, this new stationary phase has a good hydrophobic ability and a significant refolding efficiency.  相似文献   

8.
A new hydrophobic charge‐induction chromatography resin was prepared with 5‐aminobenzimidazol as functional ligand and polyacrylic ester beads as matrix. Adsorption isotherms and adsorption in columns were investigated using human immunoglobulin G and bovine serum albumin as model proteins, and the influence of pH and NaCl concentration was discussed. Results showed that the ligand density was 195 μmol/mL gel, and protein selectivity can be improved by controlling pH and salt addition. An optimized purification process (sample loading at pH 8.0 with 0.2 M NaCl and elution at pH 5.0) was performed to purify human immunoglobulin G from bovine serum albumin containing feedstock, which resulted in human immunoglobulin G purity of 99.7% and recovery of 94.6%. A similar process was applied for the purification of monoclonal antibody from cell culture supernatant, which showed antibody purity of 94.9% and recovery of 92.5%. The results indicated that the new resin developed had comparable performance as Protein A chromatography and would be suitable for antibody purification from complex feedstock.  相似文献   

9.
Antibodies are used in many applications, especially as diagnostic and therapeutic agents. Among the various techniques used for the purification of antibodies, immunoaffinity chromatography is by far the most common. For this purpose, oriented immobilization of antibodies is an important step for the efficiency of purification step. In this study, Fc fragment‐imprinted poly(hydroxyethyl methacrylate) cryogel (MIP) was prepared for the oriented immobilization of anti‐hIgG for IgG purification from human plasma. Non‐imprinted poly(hydroxyethyl methacrylate) cryogel (NIP) was also prepared for random immobilization of anti‐hIgG to compare the adsorption capacities of oriented (MIP/anti‐hIgG) and random (NIP/anti‐hIgG) cryogel columns. The amount of immobilized anti‐hIgG was 19.8 mg/g for the NIP column and 23.7 mg/g for the MIP column. Although the amount of immobilized anti‐hIgG was almost the same for the NIP and MIP columns, IgG adsorption capacity was found to be three times higher than the NIP/anti‐hIgG column (29.7 mg/g) for the MIP/anti‐hIgG column (86.9 mg/g). Higher IgG adsorption capacity was observed from human plasma (up to 106.4 mg/g) with the MIP/anti‐hIgG cryogel column. Adsorbed IgG was eluted using 1.0 m NaCl with a purity of 96.7%. The results obtained here are very encouraging and showed the usability of MIP/anti‐hIgG cryogel prepared via imprinting of Fc fragments as an alternative to conventional immunoaffinity techniques for IgG purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Supermacroporous poly(2-hydroxyethyl methacrylate) [poly(HEMA)] monolithic cryogel was prepared by radical cryocopolymerization of HEMA with N,N??-methylene bisacrylamide as crosslinker. Reactive Green 5 dye was immobilized to the cryogel with nucleophilic substitution reaction, and this dye attached cryogel column was used for affinity purification of papain from Carica papaya latex. Reactive Green 5-immobilized poly(HEMA) cryogel was characterized by swelling studies, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray analysis. Maximum papain adsorption capacity was found to be 68.5?mg/g polymer while nonspecific papain adsorption onto plain cryogel was negligible (3.07?mg/g polymer). Papain from C. papaya was purified 42-fold in single step with dye attached cryogel, and purity of papain was shown by silver-stained sodium dodecyl sulfate?Cpolyacrylamide gel electrophoresis.  相似文献   

11.
In this study, antimicrobial pigment cinnabarinic acid (CA) was produced from Pycnoporus cinnabarinus in laboratory‐scale batch cultures. Magnetic poly(ethylene glycol dimethacrylate‐N‐methacryloyl‐l‐tryptophan methyl ester) [m‐poly(EGDMA‐MATrp)] beads (average diameter = 53–103 µm) were synthesized by copolymerizing of N‐methacryloyl‐l‐tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA) in the presence of magnetite (Fe3O4) and used for the adsorption of CA. The m‐poly(EGDMA‐MATrp) beads were characterized by N2 adsorption/desorption isotherms (Brunauer Emmet Teller), X‐ray photoelecron spectroscopy, scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis, electron spin resonance and swelling studies. The efficiency of m‐poly(EGDMA‐MATrp) beads for separation of CA from culture fluid was evaluated. The effects of pH, initial concentration, contact time and temperature on adsorption were analyzed. The maximum CA adsorption capacity of the m‐poly(EGDMA‐MATrp) beads was 272.9 mg g−1 at pH 7.0, 25 °C. All the isotherm data can be fitted with the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The adsorption process obeyed pseudo‐second‐order kinetic model. Thermodynamic parameters ΔH = 5.056 kJ mol−1, ΔS = 52.44 J K−1 mol−1 and ΔG = −9.424 kJ mol−1 to ‐11.27 kJ mol−1 with the rise in temperature from 4 to 40 °C indicated that the adsorption process was endothermic and spontaneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Cibacron Blue F3GA was immobilized on poly(hydroxyethyl methacrylate) cryogel and it was used for selective and efficient depletion of albumin from human serum. The poly(hydroxyethyl methacrylate) was selected as the basic component because of its inertness, mechanical strength, chemical and biological stability, and biocompatibility. Cibacron Blue F3GA was covalently attached to the poly(hydroxyethyl methacrylate) cryogel to produce poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel affinity column. The poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was characterized with respect to gelation yield, swelling degree, total volume of macropores, Fourier Transform Infrared spectroscopy, and scanning electron microscopy. It was found that the maximum amount of adsorption (343 mg/g of dry cryogel) obtained from experimental results is very close to the calculated Langmuir adsorption capacity (345 mg/g of dry cryogel). The maximum adsorption capacity for poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel column was obtained as 950 mg/g of dry cryogel for nondiluted serum. The adsorption capacity decreased with increasing dilution ratios while the depletion ratio of albumin remained as 77% in serum sample. Finally, the poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was optimized for using in the fast protein liquid chromatography system for rapid removal of the high abundant proteins from the human serum.  相似文献   

13.
Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.  相似文献   

14.
以尼龙膜为基质,L-色氨酸(Trp)为配基,合成了一种新的亲和介质用以吸附牛γ-球蛋白(BGG)。用批量法系统考察了温度、离子强度和pH以亲和等温吸附的影响。研究结果表明,BCG与氨基酸之间的亲和相互作用力主要是静电力和疏水相互作用力。在最适条件下吸附遵循Langmuir型吸附,并且亲和吸附量最大而非特异性吸附最小。偏离该条件则会发生在蛋白质在膜上的堆积,蛋白质构型变化及蛋白质与配基间的空间取向的变化,从而使吸附不再遵循Langmuir型吸附。  相似文献   

15.
In this work, fibronectin purification from human plasma with the gelatin-immobilised poly(hydroxyethyl methacrylate) (PHEMA) cryogel has been evaluated. The PHEMA cryogel was prepared by cryo-polymerisation which proceeds in an aqueous solution of monomer frozen inside a plastic syringe. The PHEMA cryogel contained interconnected macrochannels of 10–200 μm in diameter. Gelatin molecules were covalently immobilised onto the PHEMA cryogel via carbodiimide activation. The gelatin-immobilised PHEMA cryogel was used to purify fibronectin from human plasma. Fibronectin adsorption from human plasma on the PHEMA cryogel was 0.30 mg/ml, while much higher adsorption values, up to 38 mg/ml, was obtained with the gelatin-immobilised PHEMA cryogel. The fibronectin adsorption capacity of the gelatin-immobilised PHEMA cryogel did not change with an increase in the flow rate of plasma. Up to 92 % of the adsorbed fibronectin was eluted using 2 M urea containing 1 M NaCl as elution agent. The adsorption–elution cycle was repeated ten times using the same PHEMA cryogel. No remarkable decrease was detected in the adsorption capacity of the gelatin-immobilised PHEMA cryogel.  相似文献   

16.
Hydrophobic charge‐induction chromatography is a new technology for antibody purification. To improve antibody adsorption capacity of hydrophobic charge‐induction resins, new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins with 5‐aminobenzimidazole as a functional ligand were prepared. Adsorption isotherms, kinetics, and dynamic binding behaviors of the poly(glycidyl methacrylate)‐grafted resins prepared were investigated using human immunoglobulin G as a model protein, and the effects of ligand density were discussed. At the moderate ligand density of 330 μmol/g, the saturated adsorption capacity and equilibrium constant reached the maximum of 140 mg/g and 25 mL/mg, respectively, which were both much higher than that of non‐grafted resin with same ligand. In addition, effective pore diffusivity and dynamic binding capacity of human immunoglobulin G onto the poly(glycidyl methacrylate)‐grafted resins also reached the maximum at the moderate ligand density of 330 μmol/g. Dynamic binding capacity at 10% breakthrough was as high as 76.3 mg/g when the linear velocity was 300 cm/h. The results indicated that the suitable polymer grafting combined with the control of ligand density would be a powerful tool to improve protein adsorption of resins, and new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins have a promising potential for antibody purification applications.  相似文献   

17.
The separation and purification of important biomolecule deoxyribonucleic acid (DNA) molecules are extremely important. The adsorption technique among these methods is highly preferred as the adsorbent cryogels are pretty much used due to large pores and the associated flow channels. In this study, the adsorption of DNA via Co(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [poly(HEMA-GMA)] cryogels was performed under varying conditions of pH, interaction time, initial DNA concentration, temperature, and ionic strength. For the characterization of cryogels; swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), surface area (BET), elemental and ICP-OES analysis were performed. L-lysine amino acid was chosen as Co(II)-chelating agent and the adsorption capacity of cryogels was determined as 33.81 mg DNA/g cryogel. Adsorption of pea DNA was studied under the optimum adsorption conditions and DNA adsorption capacity of cryogels was found as 10.14 mg DNA/g cryogel. The adsorption process was examined via Langmuir and Freundlich isotherm models and the Langmuir adsorption model was determined to be more appropriate for the DNA adsorption onto cryogels.  相似文献   

18.
Human body is greatly exposed to aluminum due to its high abundance in the environment. This nonessential metal is a threat to the patients of chronic renal disorders, as it is easily retained in their plasma and quickly accumulates in different tissues. Thus, there is great need to remove it from the aqueous environment. In this study, Al3+ imprinted semiinterpenetrating polymer network (semi-IPN)-based cryogel composite was prepared and applied for the purification of environmental and drinking water samples from aluminum. Poly (2-hydroxyethyl methacrylate) (pHEMA) discs were produced via cryogenic treatment and imprinted semi-IPN was introduced to the 3-(trimethoxysilyl) propyl acrylatemodified macroporous cryogel discs. The adsorption properties and selectivity of the aluminum (III) imprinted semi-IPN cryogel composite were studied in detail. The imprinted semi-IPN cryogel composite showed good selectivity towards aluminum (III) ions with the imprinting factor (IF) of 76.4 in the presence of competing copper (II), nickle (II), and iron (III) ions. The maximum adsorption capacity of 271 μmol g-1 was obtained for aluminum (III) at pH 7.0 within 10 min using imprinted semi-IPN cryogel composite. The good selectivity and reusability of aluminum (III)-imprinted semi-IPN cryogel composite makes this material an eligible candidate for the purification of drinking water from aluminum (III) leaving important minerals remained in the water.  相似文献   

19.
A constant development of dye‐affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye‐affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30°C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (Kd) obtained was 2.61 ± 0.36 × 10–5 m , proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号