首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Bacterial resistance to known therapeutics has led to an urgent need for new chemical classes of antibacterial agents. To address this we have applied?a Staphylococcus aureus fitness test strategy to natural products screening. Here we report the discovery of kibdelomycin, a novel class of antibiotics produced by a new member of the genus Kibdelosporangium. Kibdelomycin exhibits broad-spectrum, gram-positive antibacterial activity and is a potent inhibitor of DNA synthesis. We demonstrate through chemical genetic fitness test profiling and biochemical enzyme assays that kibdelomycin is a structurally new class of bacterial type II topoisomerase inhibitor preferentially inhibiting the ATPase activity of DNA gyrase and topoisomerase IV. Kibdelomycin is thus the first truly novel bacterial type II topoisomerase inhibitor with potent antibacterial activity discovered from natural product sources in more than six decades.  相似文献   

2.
The abuse of antibacterial drugs imposes a selection pressure on bacteria that has driven the evolution of multidrug resistance in many pathogens. Our efforts to discover novel classes of antibiotics to combat these pathogens resulted in the discovery of amycolamicin (AMM). The absolute structure of AMM was determined by NMR spectroscopy, X‐ray analysis, chemical degradation, and modification of its functional groups. AMM consists of trans‐decalin, tetramic acid, two unusual sugars (amycolose and amykitanose), and dichloropyrrole carboxylic acid. The pyranose ring named as amykitanose undergoes anomerization in methanol. AMM is a potent and broad‐spectrum antibiotic against Gram‐positive pathogenic bacteria by inhibiting DNA gyrase and bacterial topoisomerase IV. The target of AMM has been proved to be the DNA gyrase B subunit and its binding mode to DNA gyrase is different from those of novobiocin and coumermycin, the known DNA gyrase inhibitors.  相似文献   

3.
The rapid spread of bacterial infection caused by Staphylococcus aureus has become a problem to public health despite the presence of past trials devoted to controlling the infection. Thus, the current study aimed to explore the chemical composition of the extract of endophytic fungus Aspergillus fumigatus, isolated from Albizia lucidior leaves, and investigate the antimicrobial activity of isolated metabolites and their probable mode of actions. The chemical investigation of the fungal extract via UPLC/MS/MS led to the identification of at least forty-two metabolites, as well as the isolation and complete characterization of eight reported metabolites. The antibacterial activities of isolated metabolites were assessed against S. aureus using agar disc diffusion and microplate dilution methods. Compounds ergosterol, helvolic acid and monomethyl sulochrin-4-sulphate showed minimal inhibitory concentration (MIC) values of 15.63, 1.95 and 3.90 µg/mL, respectively, compared to ciprofloxacin. We also report the inhibitory activity of the fungal extract on DNA gyrase and topoisomerase IV, which led us to perform molecular docking using the three most active compounds isolated from the extract against both enzymes. These active compounds had the required structural features for S. aureus DNA gyrase and topoisomerase IV inhibition, evidenced via molecular docking.  相似文献   

4.
DNA gyrase is a promising target for antibacterial agents. Several classes of small-molecule inhibitors have been discovered in recent decades, but none of these have reached the market. We have designed a small library of 1,2,4-oxadiazole/pyrrolidine hybrids with mid nanomolar inhibitory and potent antibacterial activities against DNA gyrase and topoisomerase IV. Compounds 9, 15, 16, 19, and 21 inhibited Escherichia coli DNA gyrase to a similar extent as the reference compound, novobiocin, with inhibitory values ranging from 120 nM to 270 nM. Compound 16 was one of the most potent compounds in the series, with an IC50 value of 120 nM against E. coli gyrase, which is lower than the IC50 value of novobiocin (170 nM). Compound 16 had the highest inhibitory activity, with minimum inhibitory concentrations (MIC) of 24 and 62 ng/mL against Staphylococcus aureus and E. coli, respectively, which compared favorably with ciprofloxacin (30 and 60 ng/mL, respectively). Compounds 9, 15, 19, and 21 were similar to novobiocin in terms of their activity against E. coli and S. aureus topoisomerase IV, while compound 16 was more potent than novobiocin.  相似文献   

5.
Substituted 4-oxoquinoline-3- ( 1a ) and 4-oxo-1,8-naphthyridine-3- ( 1b ) carboxylic acids are clinically useful antibacterial agents exerting their activity by inhibiting the subunit A of DNA gyrase. Recently, pyrimido-[1,6-a]benzimidazoles 2 were found to be a new class of inhibitors of this enzyme. As, in 1 , replacement of C(8) by the N-atom was shown beneficial for the biological properties, a synthesis of the corresponding aza analogues of 2 has been carried out. The synthesis, DNA gyrase inhibitory activity, and in vitro antibacterial activity of the target compounds 16–19 are reported.  相似文献   

6.
In the present work, a series of 18 imidazole–triazole hybrids ( 4a–r ) has been synthesized in good yield from substituted naphthaldehydes and 1,2‐diketones in the presence of ammonium acetate. The synthesized imidazole–triazole hybrid compounds were characterized by spectral techniques and screened in vitro for their antimicrobial activity. Compound 4h was found to be most active against Staphylococcus epidermidis, and compound 4e exhibited promising activity against Escherichia coli. In the fungal species under test, compound 4q was most potent against Aspergillus niger, even better than the fluconazole. Further, compound 4e was docked in the binding site of DNA gyrase topoisomerase II of E. coli.  相似文献   

7.
Gyrase is a bacterial type IIA topoisomerase that catalyzes negative supercoiling of DNA. The enzyme is essential in bacteria and is a validated drug target in the treatment of bacterial infections. Inhibition of gyrase activity is achieved by competitive inhibitors that interfere with ATP- or DNA-binding, or by gyrase poisons that stabilize cleavage complexes of gyrase covalently bound to the DNA, leading to double-strand breaks and cell death. Many of the current inhibitors suffer from severe side effects, while others rapidly lose their antibiotic activity due to resistance mutations, generating an unmet medical need for novel, improved gyrase inhibitors. DNA supercoiling by gyrase is associated with a series of nucleotide- and DNA-induced conformational changes, yet the full potential of interfering with these conformational changes as a strategy to identify novel, improved gyrase inhibitors has not been explored so far. This review highlights recent insights into the mechanism of DNA supercoiling by gyrase and illustrates the implications for the identification and development of conformation-sensitive and allosteric inhibitors.  相似文献   

8.
A series of novel phosphoramide mustard sophoridinic acid analogues, consisting of nitrogen mustard group and sophoridinic acid scaffold, have been designed, synthesized and evaluated for their topoisomerase inhibitory activity as well as cytotoxicity against six tumor cell lines (SMMC‐7721, LoVo, MCF‐7, K562, S180 and H22) and a normal cell line (L929). Among the compounds tested, five were found to be potent inhibitors and exhibited potent cytotoxicity against S180 and H22 cell lines with IC50 values of 1–4 μM. Further mechanistic studies showed that this class of compounds acted as novel topoisomerase I (Topo I) catalytic inhibitors by preventing the binding of Topo I to DNA and inhibiting the cleavage of DNA, and molecular docking studies revealed that the binding energy for these compounds was comparable to that for classic Topo I inhibitors CPT and HCPT, indicating that the compounds have an interaction with DNA and Topo I.  相似文献   

9.
Albicidin is a recently described natural product that strongly inhibits bacterial DNA gyrase. The pronounced activity, particularly against Gram-negative bacteria, turns it into a promising lead structure for an antibacterial drug. Hence, structure–activity relationship studies are key for the in-depth understanding of structural features/moieties affecting gyrase inhibition, antibacterial activity and overcoming resistance. The 27 newly synthesized albicidins give profound insights into possibilities for variations of the C-terminus. Furthermore, in the present study, a novel derivative has been identified as overcoming resistance posed by the Klebsiella-protease AlbD. Structural modifications include, for example, azahistidine replacing the previous instable cyanoalanine as the central amino acid, as well as a triazole amide bond isostere between building blocks D and E.  相似文献   

10.
In the present study, substituted formylnaphthalenyloxymethyl‐triazolyl‐N‐phenylacetamide derivatives ( 6a – k ) have been designed and synthesized employing click chemistry approach and evaluated for their in vitro antifungal and antibacterial activities. All the newly synthesized compounds were thoroughly characterized by 1H NMR, 13C NMR, and HRMS spectral techniques. Among the screened compounds, 6d , 6e , 6j , and 6k have shown good antifungal and antibacterial activities. Compound 6k has shown very effective antimicrobial activity. We further performed exploratory docking studies on microbial DNA gyrase to rationalize the in vitro biological data and to demonstrate the mechanism of antimicrobial activity. This is the first report to demonstrate the formylnaphthalenyloxymethyl, triazole, and N‐phenylacetamide hybrids as potential antimicrobial agents.  相似文献   

11.
In this study, the antimicrobial effect and DNA gyrase inhibitor potential of vanillin-based pyridyl–substituted fluoro-indolines were evaluated. These compounds are synthesized and established through green-chemistry approaches. The inhibition effect on both DNA gyrase A and B was evaluated in silico and in vitro. Agar well diffusion method–based antimicrobial activity against Gram-ve Pseudomonas aeruginosa (MTCC 424) and Escherichia coli (MTCC 443), Gram+ve Streptococcus pyogenes (MTCC 442) and Staphylococcus aureus (MTCC 96), and a clinical isolate of Candida albicans (Fungi) was evaluated. The cytotoxicity of the compounds was assessed over macrophages using the MTT assay. In the results, the target compounds exhibited a broad-spectrum antimicrobial activity against both bacterial types and fungal.  相似文献   

12.
The prevalence of germs that are resistant to many antibiotics is rising rapidly the world over. There is a large group of researchers actively looking for better medicines. Here, we designed two series of hydrazonal and indeno[1,2-b]pyridin-5-one bearing hydrazone and azo-groups to test their antimicrobial activity. Molecular structures of all derivatives were assured based on their spectral data and elemental analyses. Results of the antimicrobial activity of the tested hydrazone and azo compounds showed promising potential for several derivatives. The minimum inhibitory concentrations (MICs) of hydrazones 4a - h and 6a - g displayed good antibacterial reactivities with a range of 3.91–250 μg/mL and moderate antifungal activity with a range of 15.6–500 μg/mL. The most promising hydrazone 4f and azo- 6a compounds demonstrated MIC values against Streptococcus faecalis and Escherichia coli equal to 3.91 and 7.81 μg/mL, respectively. Moreover, azo compound 6a showed MIC value equal to 3.91 μg/mL against Enterobacter cloacae species. Additionally, derivative 4f exhibited a significant inhibitory profile against the E. coli gyrase A enzyme (IC50 = 5.53 μg/mL). On the other hand, compound 6a (IC50 14.05 μg/mL) exhibited the lowest DNA gyrase inhibitory activity as compared to compounds 4f and reference standard drug novobiocin, IC50 5.53 and 1.88 μg/mL, respectively. Pharmacokinetic and pharmacodynamic profiles and molecular docking studies for the two most promising molecules 4f and 6a were computed and revealed that both compounds have good ADME profiles and high binding affinity to DNA gyrase binding site.  相似文献   

13.
A series of molecules containing acetylphenoxymethyl, triazole, and N‐phenylacetamide moieties were synthesized via the click chemistry approach. All the synthesized compounds were screened for their antimicrobial activities in vitro. The synthesized compounds 8a , 8b , 8m , and 8n showed better activities. We further performed exploratory docking studies to gain some insight regarding the molecular mechanism of antibacterial action of these compounds that could guide further structure‐activity relationship (SAR) studies. We examined the interaction of the most active compound with DNA gyrase (pdb id:1KZN). Based on antimicrobial and docking studies, the compounds 8a , 8b , 8m , and 8n were identified as potential antimicrobial agents.  相似文献   

14.
Abstract— The effects of selected DNA intercalating and non-intercalating drugs on the UV excision repair process in human fibroblasts have been examined. 9-Amino acridine, acridine orange, quinacrine, doxorubicin (adriamycin), ethidium bromide and actinomycin-D all inhibited the removal of pyrimidine dimers from cellular DNA by inhibiting the incision process as monitored by the nick translation assay and by an endonuclease-sensitive site assay. These agents also partially inhibited incision by the M. luteus endonuclease in an in vitro system. This is the only class of compounds tested to date that appears to block this early step of repair in mammalian cells. The DNA topoisomerase inhibitors, m -amsacrine and VP-16 (etoposide) and the bacterial gyrase inhibitors nalidixic acid and oxolinic acid were shown not to inhibit UV repair. As shown previously, however, novobiocin does block dimer removal and we show here that it is a potent inhibitor of the M. luteus UV endonuclease. While it has recently been demonstrated that many DNA intercalating agents block the strand-passing activity of DNA topoisomerase II giving rise to protein associated DNA strand breaks, the finding that the specific inhibitors of topoisomerase, m -AMSA and VP-16, do not inhibit repair, even though they block this strand passing activity, strongly suggests that inhibition of DNA topoisomerase is not associated with inhibition of DNA repair.  相似文献   

15.
Fatty acid esters of glycosides and glucopyranosiduronides were regioselectively synthesized with tin‐mediated method using dibutyltin dimethoxide as the stannylating agent, these novel esters were investigated for their antibacterial activities against bacterial Staphylococcus Aureus and Salmonella Agona, the essential structural feature as antibacterial agents was probed. Antimicrobial tests showed that some laurates of trans‐ol glycosides are effective inhibitors against S. Aureus, while some laurates and myristates of cis‐ol glycosides are moderate inhibitors against both S. Aureus and S. Agona. Studies on antimicrobial structure‐activity relationship of sugar fatty acid esters showed that both the carbohydrate moiety and the length of fatty acid played a vital role on the antibacterial effect.  相似文献   

16.
The development of new antibiotics faces a severe crisis inter alia owing to a lack of innovative chemical scaffolds with activities against Gram‐negative and multiresistant pathogens. Herein, we report highly potent novel antibacterial compounds, the myxobacteria‐derived cystobactamids 1 – 3 , which were isolated from Cystobacter sp. and show minimum inhibitory concentrations in the low μg mL?1 range. We describe the isolation and structure elucidation of three congeners as well as the identification and annotation of their biosynthetic gene cluster. By studying the self‐resistance mechanism in the natural producer organism, the molecular targets were identified as bacterial type IIa topoisomerases. As quinolones are largely exhausted as a template for new type II topoisomerase inhibitors, the cystobactamids offer exciting alternatives to generate novel antibiotics using medicinal chemistry and biosynthetic engineering.  相似文献   

17.
Lack of new antibiotics and increasing antimicrobial resistance are among the main concerns of healthcare communities nowadays, and these concerns necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids—a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe 1) a concise total synthesis of cystobactamid 507, 2) the identification of the bioactive conformation using noncovalently bonded rigid analogues, and 3) the first structure–activity relationship (SAR) study for cystobactamid 507 leading to new analogues with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor-groove binding as part of the drug–target interaction without showing significant intercalation. By designing a new analogue of cystobactamid 919-2, we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.  相似文献   

18.
To overcome bacterial resistances, the need for novel antimicrobial agents is urgent. The class of so-called nucleoside antibiotics furnishes promising candidates for the development of new antibiotics, as these compounds block a clinically unexploited bacterial target: the integral membrane protein MraY, a key enzyme in cell wall (peptidoglycan) biosynthesis. Nucleoside antibiotics exhibit remarkable structural diversity besides their uridine-derived core motifs. Some sub-classes also show specific selectivities towards different Gram-positive and Gram-negative bacteria, which are poorly understood so far. Herein, the synthesis of a novel hybrid structure is reported, derived from the 5′-defunctionalized uridine core moiety of muraymycins and the peptide chain of sansanmycin B, as a new scaffold for the development of antimicrobial agents. The reported muraymycin–sansanmycin hybrid scaffold showed nanomolar activity against the bacterial target enzyme MraY, but displayed no significant antibacterial activity against S. aureus, E. coli, and P. aeruginosa.  相似文献   

19.
A new series of novel chromene‐based oxadiazole derivatives were synthesized from a variety of chromene‐based amidoximes with readily available carboxylic acids under conventional oil bath heating as well as under microwave irradiation. The use of commercially available EDCI and HOBt as coupling reagents in DMF combined with microwave heating resulted in high yields and purities of the product 1,2,4‐oxadiazoles in an expeditious manner. This methodology is successfully applied to synthesize 18 numbers of new 2H‐chromene‐substituted 1,2,4‐oxadiazole derivatives in good to high yields. The structure of the product was ascertained by X‐ray crystallographic analysis. All the synthesized compounds were evaluated for their in vitro antibacterial activity against two different pathogenic bacterial strains, that is, Escherichia coli (MTCC614) and Klebsiella pneumoniae (MTCC4031). The obtained results from in vitro antimicrobial assays indicated that 6g and 6h exhibited good antibacterial activity nearer to the standard drug, gentamicin. The molecular docking studies showed that compounds 6g and 6h show hydrogen bonding interaction with the bacterial target DNA gyrase of E. coli.  相似文献   

20.
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium and a causative agent of tuberculosis (TB), a disease that kills more than 1.5 million people worldwide annually. One of the main reasons for this high mortality rate is the evolution of new Mtb strains that are resistant to available antibiotics. Therefore, new therapeutics for TB are in constant demand. Here, we report the development of small-molecule inhibitors that target two DNA replication enzymes of Mtb, namely DnaG primase and DNA gyrase (Gyr), which share a conserved TOPRIM fold near the inhibitors’ binding site. The molecules were developed on the basis of previously reported inhibitors for T7 DNA primase that bind near the TOPRIM fold. To improve the physicochemical properties of the molecules as well as their inhibitory effect on primase and gyrase, 49 novel compounds have been synthesized as potential drug candidates in three stages of optimization. The last stage of chemical optimization yielded two novel inhibitors for both Mtb DnaG and Gyr that also showed inhibitory activity toward the fast-growing non-pathogenic model Mycobacterium smegmatis (Msmg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号