首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Recently, a new phenomenological Hamiltonian has been proposed to describe the superconducting cuprates. This so-called Gossamer Hamiltonian is an apt model for a superconductor with strong on-site Coulomb repulsion between the electrons. It is shown that at half-filling the Gossamer superconductor with strong repulsion is unstable toward an antiferromagnetic insulator. The superconducting state undergoes a quantum phase transition to an antiferromagnetic insulator as one increases the on-site Coulomb repulsion. Near the transition the Gossamer superconductor becomes spectroscopically indistinguishable from the insulator.  相似文献   

2.
The band effects on the conductivity of a one-dimensional two-band Hubbard model is studied based on the ground state energy analysis. It is found that the system with filling factor one is a metal at zero temperature if the on-site interaction U is smaller than a critical value Uc, and is an insulator if U is larger than Uc. The value of metal-insulator transition point Uc is obtained. This result is different from that of 1D single-band Hubbard model where the quantum phase transition point Uc=0. Therefore, the orbital degree of freedom plays an essential role in the states of matter.  相似文献   

3.
By means of perturbative renormalization approach we study the effect of relevant umklapp process on dimensional crossover caused by interladder one particle hopping in weakly coupled two-leg Hubbard ladders with a half filled-band. We found that a crossover takes place at a finite value which increases as the amplitude of umklapp process increases. For the system undergoes a phase transition to the spin density wave phase (SDW) via the two particle hopping process, while for the system undergoes a crossover to the two dimensional Fermi liquid phase via one particle hopping process. Received 25 December 1998  相似文献   

4.
We present a detailed study of the extended Hubbard-Peierls model on a square lattice using the slave-boson method proposed by Kotliar and Ruckenstein. The emphasis is on the investigation of the ground state phase diagram. To compare the relative stability of several homogenous phases, the effective bosonized action was evaluated by means of a two-sublattice saddlepoint approximation which allows for the symmetry broken states compatible with the underlying bipartite lattice structure. Paying particular attention to the interplay of electron-electron and electron-phonon interaction, we take into account various types of magnetic ordered phases, i.e. para-, ferro-, ferri-, and antiferromagnetic states, as well as charge ordered phases, e.g. a static (, ) Peierls distorted state. Furthermore the approach has been applied to the following special cases: the Hubbard model, the extended Hubbard model, and the Hubbard-Peierls model. A careful numerical solution of the corresponding self-consistency equations enables us to map out the ground-state phase diagrams of the various models at arbitrary band filling over the whole range of interaction strength. In the phase diagram of the Hubbard model we found a large region with ferrimagnetic order away from half-filling. The phase diagram of the halffilled band extended Hubbard model shows a first-order transition from a spin-density-wave to a charge-density-wave state which is displaced from the mean-field lineU=4V towards largerV. At large negativeU andV we obtain a domain with charge separation. The phase compares favorably with earlier quantum Monte-Carlo results. Including the local electron-phonon coupling the charge-density-wave region is considerably enlarged. Away from half-filling the phase diagram becomes more complex: besides the pure magnetic phases we obtain ferri- and paramagnetic states which show additional charge-density order. Aspects of phase separation are discussed. Finally we investigate the variation of the different gap and order parameters along characteristic lines in the parameter space and determine the renormalized quasiparticle bands.  相似文献   

5.
We investigate the interplay between the strong correlation and the spin-orbit coupling in the Kane-Mele-Hubbard model and obtain the qualitative phase diagram via the variational cluster approach. We identify, through an increase of the Hubbard U, the transition from the topological band insulator to either the spin liquid phase or the easy-plane antiferromagnetic insulating phase, depending on the strength of the spin-orbit coupling. A nontrivial evolution of the bulk bands in the topological quantum phase transition is also demonstrated.  相似文献   

6.
We consider a modified version of the one-dimensional Hubbard model, the t 1 - t 2 Hubbard chain, which includes an additional next-nearest-neighbor hopping. It has been shown that at weak coupling this model has a Luttinger liquid phase or a spin liquid phase depending upon the ratio of t2 to t1. Additionally if the on-site interaction U is large enough, the ground state is fully polarized. Using exact diagonalization and the density-matrix renormalization group, we show that the transition to the ferromagnetic phase is either of first or second order depending on whether the Luttinger liquid or spin liquid is being destabilized. Since we work at T =0, the second order transition is a quantum magnetic critical point. Received 21 July 1999  相似文献   

7.
We discuss the ground state magnetic phase diagram of the Hubbard model off half filling within the dynamical mean-field theory. The effective single-impurity Anderson model is solved by Wilson's numerical renormalization group calculations, adapted to symmetry broken phases. We find a phase separated, antiferromagnetic state up to a critical doping for small and intermediate values of U, but could not stabilize a Néel state for large U and finite doping. At very large U, the phase diagram exhibits an island with a ferromagnetic ground state. Spectral properties in the ordered phases are discussed. Received 9 January 2002 Published online 25 June 2002  相似文献   

8.
The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clusters in the ground state and finite temperatures reveal intriguing insights into the nascent charge and spin pairings, Bose condensation and ferromagnetism in nanoclusters. The phase diagram off half filling strongly suggests the existence of quantum critical points and subsequent transitions from electron pairing into unsaturated and saturated ferromagnetic Mott–Hubbard like insulators, driven by electron repulsion. Rigorous criteria for the existence of quantum critical points and crossover temperatures are formulated. The phase diagram for 2×42×4-site clusters illustrates how these features are scaled with cluster size. The phase separation and electron pairing, monitored by a magnetic field and electron doping, surprisingly resemble phase diagrams in the family of doped high-TcTc cuprates.  相似文献   

9.
A review of electronic and magnetic phase transition in metal oxides with strong electron correlations (SEC) is given. The bandwidth control of the insulator gap is expected in the Hubbard model when the decreasing of the interatomic distance results in the bandwidth W(P) increase and at some critical value Pc, W(Pc)∼U and the Mott–Hubbard gap disappears. The other situation takes place in transition metal boroxides FeBO3 and GdFe3(BO3)4, where the increase of crystal field parameter Δ(P) results in the high spin–low spin crossover.  相似文献   

10.
We study the quantum phase transition between a band (“ionic”) insulator and a Mott-Hubbard insulator, realized at a critical value in a bipartite Hubbard model with two inequivalent sites, whose on-site energies differ by an offset . The study is carried out both in D=1 and D=2 (square and honeycomb lattices), using exact Lanczos diagonalization, finite-size scaling, and Berry's phase calculations of the polarization. The Born effective charge jump from positive infinity to negative infinity previously discovered in D=1 by Resta and Sorella is confirmed to be directly connected with the transition from the band insulator to the Mott insulating state, in agreement with recent work of Ortiz et al. In addition, symmetry is analysed, and the transition is found to be associated with a reversal of inversion symmetry in the ground state, of magnetic origin. We also study the D=1 excitation spectrum by Lanczos diagonalization and finite-size scaling. Not only the spin gap closes at the transition, consistent with the magnetic nature of the Mott state, but also the charge gap closes, so that the intermediate state between the two insulators appears to be metallic. This finding, rationalized within Hartree-Fock as due to a sign change of the effective on-site energy offset for the minority spin electrons, underlines the profound difference between the two insulators. The band-to-Mott insulator transition is also studied and found in the same model in D=2. There too we find an associated, although weaker, polarization anomaly, with some differences between square and honeycomb lattices. The honeycomb lattice, which does not possess an inversion symmetry, is used to demonstrate the possibility of an inverted piezoelectric effect in this kind of ionic Mott insulator. Received 21 May 1999  相似文献   

11.
We study the difference between on site Hubbard and long range Coulomb repulsions for two interacting particles in a disordered chain. The system size L (in units of the lattice spacing) is of the order of the one particle localization length and the energies are taken near the band center. In the two cases, the limits of weak and strong interactions are characterized by uncorrelated energy levels and are separated by a crossover regime where the states are more extended and the spectra more rigid. U denoting the interaction strength and t the kinetic energy scale, the crossovers take place for interaction energy to kinetic energy ratios U/t and U/(2tL) of order one, for Hubbard and Coulomb repulsions respectively. While Hubbard repulsion can only yield weak critical chaos with intermediate spectral statistics, Coulomb repulsion can drive the two particle system to quantum chaos with Wigner-Dyson spectral statistics. The interaction matrix elements are studied to explain this difference. Received 21 March 2000 and Received in final form 5 February 2001  相似文献   

12.
13.
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U > Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.  相似文献   

14.
In order to clarify the physics of the crossover from a Peierls band insulator to a correlated Mott-Hubbard insulator, we analyze ground-state and spectral properties of the one-dimensional half-filled Holstein-Hubbard model using quasi-exact numerical techniques. In the adiabatic limit the transition is connected to the band to Mott insulator transition of the ionic Hubbard model. Depending on the strengths of the electron-phonon coupling and the Hubbard interaction the transition is either first order or evolves continuously across a narrow intermediate phase with finite spin, charge, and optical excitation gaps. Received 7 July 2002 / Received in final form 21 October 2002 Published online 27 January 2003 RID="a" ID="a"e-mail: holger.fehske@physik.uni-greifswald.de  相似文献   

15.
We have studied the critical behaviour of a doped Mott insulator near the metal-insulator transition for the infinite-dimensional Hubbard model using a linearized form of dynamical mean-field theory. The discontinuity in the chemical potential in the change from hole to electron doping, for U larger than a critical value U c, has been calculated analytically and is found to be in good agreement with the results of numerical methods. We have also derived analytic expressions for the compressibility, the quasiparticle weight, the double occupancy and the local spin susceptibility near half-filling as functions of the on-site Coulomb interaction and the doping. Received 15 March 2001 and Received in final form 22 May 2001  相似文献   

16.
林明喜  祁胜文 《中国物理 B》2010,19(12):127401-127401
Using a universal relation between electron filling factor and ground state energy,this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime,and demonstrates that in contrast to the usual Hubbard model(gc = 1/2),the dimensionless coupling strength parameter g c heavily depends on the electron filling,and it has a "particle-hole" symmetry about electron quarter filling point.As increasing the nearest neighbouring repulsive interaction,the single particle spectral weight is transferred from low energy to high energy regimes.Moreover,at electron quarter filling,there is a metal-Mott insulator transition at the strong coupling point gc = 1/4,and this transition is a continuous phase transition.  相似文献   

17.
We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U>0 at half-filling. For large enough X相似文献   

18.
We perform a comparative Monte Carlo study of the easy-plane deconfined critical point (DCP) action and its short-range counterpart to reveal close similarities between the two models for intermediate and strong coupling regimes. For weak coupling, the structure of the phase diagram depends on the interaction range: while the short-range model features a tricritical point and a continuous U(1) × U(1) transition, the long-range DCP action is characterized by the runaway renormalization flow of coupling into a first (I) order phase transition. We develop a “numerical flowgram” method for high precision studies of the runaway effect, weakly I-order transitions, and polycritical points. We prove that the easy-plane DCP action is the field theory of a weakly I-order phase transition between the valence bond solid and the easy-plane antiferromagnet (or superfluid, in particle language) for any value of the weak coupling strength. Our analysis also solves the long standing problem of what is the ultimate fate of the runaway flow to strong coupling in the theory of scalar electrodynamics in three dimensions with U(1) × U(1) symmetry of quartic interactions.  相似文献   

19.
In this paper, we study the non-magnetic insulator state near Mott transition of 2D π-flux Hubbard model on square lattice and find that such non-magnetic insulator state is quantum spin liquid state with nodal fermionic excitations – nodal spin liquid (NSL). When there exists small easy-plane anisotropic energy, the ground state becomes Z 2 topological spin liquid (TSL) with full gapped excitations. The U(1) × U(1) mutual-Chern-Simons (MCS) theory is obtained to describe the low energy physics of NSL and TSL.  相似文献   

20.
The correlation-driven transition from a paramagnetic metal to a paramagnetic Mott-Hubbard insulator is studied within the half-filled Hubbard model for a thin-film geometry. We consider simple-cubic films with different low-index surfaces and film thickness d ranging from d=1 (two-dimensional) up to d=8. Using the dynamical mean-field theory, the lattice (film) problem is self-consistently mapped onto a set of d single-impurity Anderson models which are indirectly coupled via the respective baths of conduction electrons. The impurity models are solved at zero temperature using the exact-diagonalization algorithm. We investigate the layer and thickness dependence of the electronic structure in the low-energy regime. Effects due to the finite film thickness are found to be the more pronounced the lower is the film-surface coordination number. For the comparatively open sc(111) geometry we find a strong layer dependence of the quasi-particle weight while it is much less pronounced for the sc(110) and the sc(100) film geometries. For a given geometry and thickness d there is a unique critical interaction strength U c2 (d) at which all effective masses diverge and there is a unique strength U c1 (d) where the insulating solution disappears. U c2 (d) and U c1 (d) gradually increase with increasing thickness eventually approaching their bulk values. A simple analytical argument explains the complete geometry and thickness dependence of Uc2. Uc1 is found to scale linearly with Uc2. Received 19 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号