首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice husks (RHs), a kind of biowastes, are firstly hydrothermally pretreated by HCl aqueous solution to achieve promising macropores, facilitating subsequently impregnating ferric nitrate and urea aqueous solution, the precursor of Fe3O4 nanoparticles. A Fe3O4/rice husk-based maco-/mesoporous carbon bone nanocomposite is finally prepared by the high-temperature hydrothermal treatment of the precursor-impregnated pretreated RHs at 600 °C followed by NaOH aqueous solution treatment for dissolving silica and producing mesopores. The macro-/mesopores are able to provide rapid lithium ion-transferring channels and accommodate the volumetric changes of Fe3O4 nanoparticles during cycling as well. Besides, the macro-/mesoporous carbon bone can offer rapid electron-transferring channels through directly fluxing electrons between Fe3O4 nanoparticles and carbon bone. As a result, this nanocomposite delivers a high initial reversible capacity of 918 mAh g?1 at 0.2 A g?1 and a reversible capacity of 681 mAh g?1 remained after 200 cycles at 1.0 A g?1. The reversible capacities at high current densities of 5.0 and 10.0 A g?1 still remain at high values of 463 and 221 mAh g?1, respectively.  相似文献   

2.
In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g?1 after 1000 cycles with a low average fading capacity of 0.15 mAh g?1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g?1 is remained at the current densities of 10.0 A g?1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.  相似文献   

3.
Vanadium pentoxide (V2O5) nanofibers (NFs) with a thin carbon layer of 3–5 nm, which wrapped on V2O5 nanoparticles, and integrated multiwalled carbon nanotubes (MWCNTs) have been fabricated via simple electrospinning followed by carbonization process and post-sintering treatment. The obtained composite displays a NF structure with V2O5 nanoparticles connected to each other, and good electrochemical performance: delivering initial capacity of 320 mAh g?1 (between 2.0 and 4.0 V vs. Li/Li+), good cycling stability (223 mAh g?1 after 50 cycles), and good rate performance (~?150 mAh g?1 at 2 A g?1). This can attribute to the carbon wrapped on the V2O5 nanoparticles which can not only enhance the electric conductivity to decrease the impendence of the cathode materials but also maintain the structural stability to protect the nanostructure from the corruption of electrolyte and the strain stress due to the Li-ion intercalation/deintercalation during the charge/discharge process. And, the added MWCNTs play the role of framework of the unique V2O5 coated by carbon layer and composited with MWCNT NFs (V2O5/C@MWCNT NFs) to ensure the material is more stable.  相似文献   

4.
Porous LiMn2O4 microsheets with micro-nanostructure have been successfully prepared through a simple carbon gel-combustion process with a microporous membrane as hard template. The crystal structure, morphology, chemical composition, and surface analysis of the as-obtained LiMn2O4 microsheets are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscope (XPS). It can be found that the as-prepared LiMn2O4 sample presents the two-dimensional (2-D) sheet structure with porous structure comprised with nano-scaled particles. As cathode materials for lithium-ion batteries, the obtained LiMn2O4 microsheets show superior rate capacities and cycling performance at various charge/discharge rates. The LiMn2O4 microsheets exhibit a higher charge and discharge capacity of 137.0 and 134.7 mAh g?1 in the first cycle at 0.5 C, and it remains 127.6 mAh g?1 after 50 cycles, which accounts for 94.7% discharge capacity retention. Even at 10 C rate, the electrode also delivers the discharge capacity of 91.0 mAh g?1 after 300 cycles (93.5% capacity retention). The superior electrochemical properties of the LiMn2O4 microsheets could be attributed to the unique microsheets with porous micro-nanostructure, more active sites of the Li-ions insertion/deinsertion for the higher contact area between the LiMn2O4 nano-scaled particles and the electrolyte, and better kinetic properties, suggesting the applications of the sample in high-power lithium-ion batteries.  相似文献   

5.
Mn3O4 and Mn3O4 (140)/CNTs have been investigated as high-capacity anode materials for lithium-ion batteries (LIBs) applications. Nanoparticle Mn3O4 samples were synthesized by hydrothermal method using Mn(Ac)2 and NH3·H2O as the raw materials and characterized by XRD, TG, EA, TEM, and SEM. Its electrochemical performances, as anode materials, were evaluated by galvanostatic discharge-charge tests. The Mn3O4 (140)/CNTs displays outstanding electrochemical performances, such as high initial capacity (1942 mAh g?1), stable cycling performance (1088 mAh g?1 and coulombic efficiency remain at 97% after 60 cycles) and great rate performance (recover 823 mAh g?1 when return to initial current density after 44 cycles). Compared to pure Mn3O4 (140), the improving electrochemical performances can be attributed to the existence of very conductive CNTs. The Mn3O4 (140)/CNTs with excellent electrochemical properties might find applications as highly effective materials in electromagnetism, catalysis, microelectronic devices, etc. The process should also offer an effective and facile method to fabricate many other nanosized metallic oxide/CNTs nanocomposites for low-cost, high-capacity, and environmentally benign materials for LIBs.  相似文献   

6.
Li2ZnTi3O8/C nanocomposite has been synthesized using phenolic resin as carbon source in this work. The structure, morphology, and electrochemical properties of the as-prepared Li2ZnTi3O8 samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy (RS), galvanostatic charge–discharge, and AC impedance spectroscopy. SEM images show that Li2ZnTi3O8/C was agglomerated with a primary particle size of ca. 40 nm. TEM images reveal that a homogeneous carbon layer (ca. 5 nm) formed on the surface of Li2ZnTi3O8 particles which is favorable to improve the electronic conductivity and inhibit the growth of Li2ZnTi3O8 during annealing process. The as-prepared Li2ZnTi3O8/C composite with 6.0 wt.% carbon exhibited a high initial discharge capacity of 425 and 159 mAh g?1 at 0.05 and 5 A g?1, respectively. At a high current density of 1 A g?1, 95.5 % of its initial value is obtained after 100 cycles.  相似文献   

7.
In this paper, the LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining process. The use of a spray-drying process to form particles, followed by a calcination treatment at the optimized temperature of 750 °C to produce spherical LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific surface area of 60.1 m2 g?1, a tap density of 1.15 g mL?1, and a specific capacity of 132.9 mAh g?1 at 0.1 C. The carbon nanofragment (CNF) additives, introduced into the spheres during the co-precipitation spray-drying period, greatly enhance the rate performance and cycling stability of LiNi0.5Mn1.5O4. The sample with 1.0 wt.% CNF calcined at 750 °C exhibits a maximum capacity of 131.7 mAh g?1 at 0.5 C and a capacity retention of 98.9% after 100 cycles. In addition, compared to the LiNi0.5Mn1.5O4 material without CNF, the LiNi0.5Mn1.5O4 with CNF demonstrates a high-rate capacity retention that increases from 69.1% to 95.2% after 100 cycles at 10 C, indicating an excellent rate capability. The usage of CNF and the synthetic method provide a promising choice for the synthesis of a stabilized LiNi0.5Mn1.5O4 cathode material.
Graphical Abstract Micro/nanostructured LiNi0.5Mn0.5O4 cathode materials with enhanced electrochemical performances for high voltage lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining routine and using carbon nanofragments (CNFs) as additive.
  相似文献   

8.
Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g?1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g?1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g?1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.  相似文献   

9.
In order to avoid the shortcomings of large particle size and poor uniformity of material synthesized by the traditional solid-state method, this paper utilizes a simple improvement of calcination process (i.e., calcination–milling–recalcination) based on the traditional solid-state synthesis to successfully prepare a large number of well-distributed, micrometer-sized, spherical secondary LiNi0.5Mn1.5O4 particles. Each particle is composed of nano- and/or sub-micrometer-sized grains. Results of the electrochemical performance tests show that the material exhibits a remarkable cycle performance and rate capability compared with that obtained from traditional synthesis method; the spherical LiNi0.5Mn1.5O4 particles can deliver a large capacity of 135.8 mAh g?1 at a 1 C discharge rate with a high retention of 77 % after 741 cycles and a good capacity of 105.9 mAh g?1 at 10 C. Cyclic voltammetry measurements confirm that the significantly improved electrochemical properties are due to enhanced electronic conductivity and lithium-ion diffusion coefficient resulting from the optimized morphology and particle size. This improved method is more suitable for mass production.  相似文献   

10.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

11.
Natural graphite treated by mechanical activation can be directly applied to the preparation of Li3V2(PO4)3. The carbon-coated Li3V2(PO4)3 with monoclinic structure was successfully synthesized by using natural graphite as carbon source and reducing agent. The amount of activated graphite is optimized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectrum, galvanostatic charge/discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Our results show that Li3V2(PO4)3 (LVP)-10G exhibits the highest initial discharge capacity of 189 mAh g?1 at 0.1 C and 162.9 mAh g?1 at 1 C in the voltage range of 3.0–4.8 V. Therefore, natural graphite is a promising carbon source for LVP cathode material in lithium ion batteries.  相似文献   

12.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

13.
Coralloid and hierarchical Co3O4 nanostructures were synthesized by a facile two-step approach composed of room temperature solution-phase synthesis without any surfactant and calcination of precursor. Owing to the unique structural features, the capacitance of Co3O4 could reach up to 591 F g?1 at a current density of 0.5 A g?1. Especially the cycling stability remained about 97 % after 2000 cycles at a current density of 1 A g?1. These results demonstrated that the coralloid and hierarchical Co3O4 were excellent candidates for electrochemical supercapacitor devices.  相似文献   

14.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

15.
Transition metal oxides have great potential as anode for lithium-ion batteries (LIBs), owing to their high theoretical capacity and low cost. However, the poor cycling stability and electron conductivity have limited the widely expected application of transition metal oxides. In this work, highly single-crystalline Co3O4 cubes with 400 nm in the average side length are successfully synthesized by a facile hydrothermal method. When used as anode for LIBs, the Co3O4 single-crystalline cubes exhibit highly stable and substantial discharge capacities of the amount to 877 mA h g?1 at 200 mA g?1 after 110 cycles with remarkable capacity retention of 98%, and 576 mA h g?1 even at a high rate of 2000 mA g?1. The scalability of the preparation method and the impressive results achieved here demonstrate the potential for the application to the future development of transition metal oxides anodes. These results suggest that the single-crystalline Co3O4 is a promising electrode material for the high-performance energy storage devices.  相似文献   

16.
Self-supported and binder-free electrodes based on homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies (Co3O4/co-modified TiO2 nanotube arrays (m-TNAs)) are prepared via a simple and cost-effective method in this paper. The highly ordered TNAs offer direct pathways for electron and ion transport and can be used as 3D substrate for the decoration of electroactive materials without any binders. Then, by a facile one-step calcination process, the electrochemical performance of the as-obtained carbon layer and oxygen vacancy m-TNAs is approximately 83 times higher than that of pristine TNAs. In addition, Co3O4 nanoparticles are uniformly deposited onto the m-TNAs by a universal chemical bath deposition (CBD) process to further improve the supercapacitive performance. Due to the synergistic effect of m-TNAs and Co3O4 nanoparticles, a maximum specific capacitance of 662.7 F g?1 can be achieved, which is much higher than that of Co3O4 decorated on pristine TNAs (Co3O4/TNAs; 166.2 F g?1). Furthermore, the specific capacitance retains 86.0 % of the initial capacitance after 4000 cycles under a high current density of 10 A g?1, revealing the excellent long-term electrochemical cycling stability of Co3O4/m-TNAs. Thus, this kind of heterostructured Co3O4/m-TNAs could be considered as promising candidates for high-performance supercapacitor electrodes.  相似文献   

17.
To deal with the large volume change for lithium-ion batteries (LIBs), we illustrate the synthesis of CoMn2O4 microspheres with sub-nanoparticles by a hydrothermal method followed by thermal treatment. The size of microsphere is approximately 2.2 μm, and the sub-nanoparticle is about 17 nm. There is sufficient void space between CoMn2O4 microspheres with sub-nanoparticles for ensuring the well structural integrity. As advanced anode for LIBs, CoMn2O4 microspheres display stable specific capacity retention of 772 mAh g?1 over 500 cycles at a current density of 100 mA g?1. Such a kind of structure is beneficial for enhanced rate and cycling capabilities in LIBs applications, which could increase contact area between electrolyte and active materials, short path for lithium ions and electrons and accommodate the volume change with additional void space during cycling. It has a great application prospect for use as electrochemical energy storage because of the enhanced performance.  相似文献   

18.
A novel disk-like shape of Co3O4 with high porosity was synthesized by a facile hydrothermal approach followed by calcination at 485 °C for 2 h. In order to further confirm the crystal structure, morphology, particle size, surface area, and porosity of the sample, a series of corresponding characterization techniques were used. The disk-like shape of Co3O4 as an anode delivered excellent rate capability such as 510.5 mAh g?1 at 4.0 C, which is much higher than the theoretical capacity of commercial graphite anode (372 mAh g?1). However, the electrode could not recover the high capacity during the long-term cycling at various higher current rates due to the deformation of the structure as confirmed by the ex situ studies. It is believed that the obtained remarkable structural feature with numerous void pores within the structure may be helpful for short-term cycling due to the large contact areas between the electrode and the electrolyte and a shorter diffusion length for lithium ion insertion but unable to act as a buffer to relax the volume expansion/contraction and alleviate the structural damage of the electrode during long-term cycling.  相似文献   

19.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

20.
There is a growing need for the electrode with high mass loading of active materials, where both high energy and high power densities are required, in current and near-future applications of supercapacitor. Here, an ultrathin Co3S4 nanosheet decorated electrode (denoted as Co3S4/NF) with mass loading of 6 mg cm?2 is successfully fabricated by using highly dispersive Co3O4 nanowires on Ni foam (NF) as template. The nanosheets contained lots of about 3~5 nm micropores benefiting for the electrochemical reaction and assembled into a three-dimensional, honeycomb-like network with 0.5~1 μm mesopore structure for promoting specific surface area of electrode. The improved electrochemical performance was achieved, including an excellent cycliability of 10,000 cycles at 10 A g?1 and large specific capacitances of 2415 and 1152 F g?1 at 1 and 20 A g?1, respectively. Impressively, the asymmetric supercapacitor assembled with the activated carbon (AC) and Co3S4/NF electrode exhibits a high energy density of 79 Wh kg?1 at a power density of 151 W kg?1, a high power density of 3000 W kg?1 at energy density of 30 Wh kg?1 and 73 % retention of the initial capacitance after 10,000 charge-discharge cycles at 2 A g?1. More importantly, the formation process of the ultrathin Co3S4 nanosheets upon reaction time is investigated, which is benefited from the gradual infiltration of sulfide ions and the template function of ultrafine Co3O4 nanowires in the anion-exchange reaction.
Graphical abstract The ultrathin 2D Co3S4 nanosheets fabricated on 3D Ni foam and the formation process of the ultrathin Co3S4 nanosheets upon reaction times has been investigated. At the same time, the Co3S4/NF electrode displays an outstanding specific capacitance of 2420 F g?1 at 1 A g?1 with high mass loading of 6 mg cm?2.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号