首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We consider the mixed boundary value problem Au = f in Ω, B0u = g0in Γ?, B1u = g1in Γ+, where Ω is a bounded open subset of Rn whose boundary Γ is divided into disjoint open subsets Γ+ and Γ? by an (n ? 2)-dimensional manifold ω in Γ. We assume A is a properly elliptic second order partial differential operator on Ω and Bj, for j = 0, 1, is a normal jth order boundary operator satisfying the complementing condition with respect to A on Γ+. The coefficients of the operators and Γ+, Γ? and ω are all assumed arbitrarily smooth. As announced in [Bull. Amer. Math. Soc.83 (1977), 391–393] we obtain necessary and sufficient conditions in terms of the coefficients of the operators for the mixed boundary value problem to be well posed in Sobolev spaces. In fact, we construct an open subset T of the reals such that, if Ds = {u ? Hs(Ω): Au = 0} then for s ? = 12(mod 1), (B0,B1): Ds → Hs ? 12?) × Hs ? 32+) is a Fredholm operator if and only if s ∈T . Moreover, T = ?xewTx, where the sets Tx are determined algebraically by the coefficients of the operators at x. If n = 2, Tx is the set of all reals not congruent (modulo 1) to some exceptional value; if n = 3, Tx is either an open interval of length 1 or is empty; and finally, if n ? 4, Tx is an open interval of length 1.  相似文献   

2.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

3.
Consider an elliptic sesquilinear form defined on V × V by J[u, v] = ∫Ωajk?u?xk\?t6v?xj + ak?u?xkv? + αju\?t6v?xj + auv?dx, where V is a closed subspace of H1(Ω) which contains C0(Ω), Ω is a bounded Lipschitz domain in Rn, ajk, ak, αj, a ? L(Ω), and Re ajkζkζj ? κ > 0 for all ζ?Cn with ¦ζ¦ = 1. Let L be the operator with largest domain satisfying J[u, v] = (Lu, v) for all υ∈V. Then L + λI is a maximal accretive operator in L2(Ω) for λ a sufficiently large real number. It is proved that (L + λI)12 is a bounded operator from V to L2(Ω) provided mild regularity of the coefficients is assumed. In addition it is shown that if the coefficients depend differentiably on a parameter t in an appropriate sense, then the corresponding square root operators also depend differentiably on t. The latter result is new even when the forms J are hermitian.  相似文献   

4.
5.
Let Hv(h) = ?(h22) · Δ + V, lim¦x¦ → +∞ V(x) = + ∞. Under suitable conditions we prove that ?(Hv(h)) is a pseudodifferential operator whose symbol has an asymptotic: a?(h) ~∑j ? 0 hja?,j. More general pseudodifferential operator's classes are also considered. We apply this result to study the semi-classical behaviour of the spectrum of Hv as h → 0. So, we improve recent results obtained by J. Chazarain and by the author in collaboration with B. Helffer. Furthermore we give a precise meaning to the formal development considered in B. Grammaticos and A. Voros' work (Ann. Physics123 (1979), 359–380).  相似文献   

6.
Let G be a separable locally compact group with a discrete cocompact subgroup Γ; let N be a normal subgroup of G, and suppose that Γ0 = ΓN is cocompact in N. Let ? be a finite-dimensional representation of Γ, and let τ = IndΓ → G ?. We investigate the problem of determining the decomposition of τ, given the decomposition of the corresponding representation τ0 = IndΓ0 → N (? ¦ Γ0) and certain other facts (essentially those used in the “Mackey machine”). The last section is devoted to a reciprocity theorem for τ.  相似文献   

7.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

8.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

9.
Let 1M be a denumerately comprehensive enlargement of a set-theoretic structure sufficient to model R. If F is an internal 1finite subset of 1N such that F = {1,…,γ}, γ?1N?N, we define a class of 1finite cooperative games having the form ΓF(1ν) = 〈F,A(F), 1ν〉, where A(F) is the internal algebra of the internal subsets of F, and 1ν is a set-function with Dom1ν=A(F), Rng1ν = 1R+, and 1ν(Ø) = 0. If SI(1ν) is the space of S-imputations of a game ΓF(1ν) such that 1ν(F)<η, for some η?1N, then we prove that SI(1ν) contains two nonempty subsets: QK(ΓF(1ν)) and SM1F(1ν)), termed the quasi-kernel and S-bargaining set, respectively. Both QK(ΓF(1ν)) and SM1F(1ν)) are external solution concepts for games of the form ΓF (1ν) and are defined in terms of predicates that are approximate in infinitesimal terms. Furthermore, if L(Θ) is the Loeb space generated by the 1finitely additive measure space 〈F, A(F), UF〉, and if a game ΓF(1ν) has a nonatomic representation ψ(1ν?0) on L(Θ) with respect to S-bounded transformations, then the standard part of any element in QK(ΓF(1ν)) is Loeb-measurable and belongs to the quasi-kernel of ψ(1ν?0) defined in standard terms.  相似文献   

10.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

11.
An elastic-plastic bar with simply connected cross section Q is clamped at the bottom and given a twist at the top. The stress function u, at a prescribed cross section, is then the solution of the variational inequality (0.1) minv?K{∝Q ¦2 ? 2θ1Q v} = ∝Q ¦2 ? 2θ1Q u, u ? K, where (0.2) K = {v ? H01(Q), ¦v¦ ? 1 a.e.} and θ1 is equal to the angle of the twist (after normalizing the units). Introducing the Lagrange multiplier λθ1, the unloading problem consists in solving the variational inequality (0.3) minv?K{∝Q ¦2 + 2 ∝Q λθ1 · v ? 2θ2Q v} = ∝Q ¦2 + 2 ∝Q λθ1u · w ? 2θ2Q w. w ? K, where θ2 is the twisting angle for the unloaded bar; θ2 < θ1. Let (0.4) K1 = {v ? H01(Q), ?d(x) ? v(x) ? d(x)}, where d(x) = dist.(x, ?Q), and denote by u1, w1 the solutions of (0.1), (0.3), respectively, when K is replaced by K1. The following results are well known for the loading problem (0.1):(0.5) u = u1; (0.6) the plastic set P = (X ?Q?; ¦u(x)¦ = 1} is connected to the boundary. In this paper we show that, in general, (0.7) w ≠ w1; (0.8) the plastic set P? = {x ?Q?; ¦w(x)¦ = 1} is not connected to the boundary. That is, we construct domains Q for which (0.7) and (0.8) hold for a suitable choice of θ1, θ2.  相似文献   

12.
Let D(?) be the Doob's class containing all functions f(z) analytic in the unit disk Δ such that f(0) = 0 and lim inf¦f(z) ¦ ? 1 on an arc A of ?Δ with length ¦A ¦? ?. It is first proved that if f?D(?) then the spherical norm ∥ f ∥ = supz?Δ(1 ? ¦z¦2)¦f′(z)¦(1 + ¦f(z)¦2) ? C1sin(π ? (?2))/ (π ? (g92)), where C1 = limn→∞∥ znand12 < C1 < 2e. Next, U represents the Seidel's class containing all non-constant functions f(z) bounded analytic in Δ such that ¦tf(ei0)¦ = 1 almost everywhere. It is proved that inff?Uf∥ = 0, and if f has either no singularities or only isolated singularities on ?Δ, then ∥f∥ ? C1. Finally, it is proved that if f is a function normal in Δ, namely, the norm ∥f∥< ∞, then we have the sharp estimate ∥fp∥ ? pf∥, for any positive integer p.  相似文献   

13.
Orthogonal polynomials on the multivariate negative binomial distribution,
(1 + Θ)?α?x(πj=0pΘjxjxj!) Γ(α + x)Γ(α)
where α > 0, Θ1 > 0, x = ΣΘi, x0, x1, …, xp = 0,1, … are constructed and their properties studied.  相似文献   

14.
We suppose that K is a countable index set and that Λ = {λk¦ k ? K} is a sequence of distinct complex numbers such that E(Λ) = {eλkt¦ λk ? Λ} forms a Riesz (strong) basis for L2[a, b], a < b. Let Σ = {σ1, σ2,…, σm} consist of m complex numbers not in Λ. Then, with p(λ) = Πk = 1m (λ ? σk), E(Σ ∪ Λ) = {eσ1t…, eσmt} ∪ {eλktp(λk)¦ k ? K} forms a Riesz (strong) bas Sobolev space Hm[a, b]. If we take σ1, σ2,…, σm to be complex numbers already in Λ, then, defining p(λ) as before, E(Λ ? Σ) = {p(λk) eλkt¦ k ? K, λk ≠ σj = 1,…, m} forms a Riesz (strong) basis for the space H?m[a, b]. We also discuss the extension of these results to “generalized exponentials” tneλkt.  相似文献   

15.
Let ψ be convex with respect to ?, B a convex body in Rn and f a positive concave function on B. A well-known result by Berwald states that 1¦B¦B ψ(f(x)) dx ? n ∝01 ψ(ξt)(1 ? t)n ? 1) dt (1) if ξ is chosen such that 1¦B¦B ?(f(x)) dx = n ∝01 ?(ξt)(1 ? t)n ? 1) dt.The main purpose in this paper is to characterize those functions f : BR+ such that (1) holds.  相似文献   

16.
Let H1 = ?∑i = 1Ni + V(xi)) + ∑1 ? i <j ? N¦xi ? xj¦?1, V(xi) = N ∝ ¦x ? y¦?1 ?(y)dy, with ? a normalized Gaussian. Suppose E ≠ 0 and that H = H1 + E · (∑i = 1Nxi) has no eigenfunctions in L2(R3N. If H1ψ = μψ with μ < infσess(H1), then (ψ, e?itHψ) decays exponentially at a rate governed by the positions of the resonances of H.  相似文献   

17.
We propose a generalization of Heath's theorem that semi-metric spaces with point-countable bases are developable: A semi-metrizable space X is developabale if (and only if) there is on it a σ-discrete family C=?m?NCm of closed sets, interior-preserving over each member C of which is a countable family {Dn(C): n ∈ N} of collections of open sets such that if U is a neighbourhood of ξ∈X, then there are such a Γ∈C and such a v∈ N that ξ ? Γ and ξ∈ int ∩ (D: ξ: DDv(Γ))?U.  相似文献   

18.
Let Kn= {x ? Rn: (x12 + · +x2n?1)12 ? xn} be the n-dimensional ice cream cone, and let Γ(Kn) be the cone of all matrices in Rnn mapping Kn into itself. We determine the structure of Γ(Kn), and in particular characterize the extreme matrices in Γ(Kn).  相似文献   

19.
Let f(z), an analytic function with radius of convergence R (0 < R < ∞) be represented by the gap series ∑k = 0ckzλk. Set M(r) = max¦z¦ = r ¦f(z)¦, m(r) = maxk ? 0{¦ ck ¦ rλk}, v(r) = maxk ¦ ¦ ck ¦ rλk = m(r)} and define the growth constants ?, λ, T, t by
?λ=lim supr→R inf{log[Rr /(R?r)]?1log+log+M(r)}
, and if 0 < ? < ∞,
Tt=lim supr→R inf{[Rr /(R?r)]??log+M(r)}
. Then, assuming 0 < t < T < ∞, we obtain a decomposition theorem for f(z).  相似文献   

20.
On a compact Kähler manifold of complex dimension m ? 2, let us consider the change of Kähler metric g′λ\?gm = gλ\?gm + ?λ\?gmφ. Let F?C(V × R) be a function everywhere > 0 and v a real number ≠ 0. When 0 < C?1 ? F(x, t) ? C(¦t¦a + 1) for all (x, t) ?V × ] ?∞, t0], where C and t0 are constants and 1 ? a < m(m ? 1), one exhibits a function φ?C (V) such that ¦g′∥g¦?1 = eν\?gfF(x, φ ? \?gf) (¦g¦ and ¦g′¦ the determinants of the metrics g and g′, \?gf = (mes V)?1 ∝ φ dV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号