首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some cis,cis,cis-RuX(2)(Me(2)SO)(2)(1,2-Me(2)Im)L complexes [L = 1,2-Me(2)Im (1,2-dimethylimidazole) or Me(3)Bzm (1,5,6-trimethylbenzimidazole), X = Cl or Br, and Me(2)SO = S-bonded DMSO] have been synthesized and their rotamers studied in CDCl(3). From 2D NMR data, cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(Me(3)Bzm) has 1,2-Me(2)Im in position "a" (cis to both Me(2)SO's and cis to "b") and Me(3)Bzm in position "b" (trans to one Me(2)SO and cis to the other). There are two stable atropisomers [head-to-tail (HT, 84%) and head-to-head (HH, 16%), defining the aromatic H of Ru-N-C-H as head for both ligands]. Me(3)Bzm has the same orientation in both atropisomers. In this orientation, the unfavorable interligand steric interactions of Me(3)Bzm with the Me(2)SO and 1,2-Me(2)Im ligands appear to be countered by favorable electrostatic attraction between the delta+ N(2)CH moiety of Me(3)Bzm and the delta- cis Cl ligands. The 1,2-Me(2)Im lacks a delta+ N(2)CH group, and its orientation is dominated by steric effects of the 2-Me group. The NMR spectrum of cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(2) is consistent with four rotamers in restricted rotation about both Ru-N bonds: two HH and two HT. 2D NMR techniques (NOESY and ROESY) afforded complete proton signal assignments. The ligand disposition could be assessed from the large chemical shift dispersion of some 1,2-Me(2)Im ligand signals (Delta 0.86-1.52 ppm) arising from cis-1,2-Me(2)Im shielding modulated by deshielding influences of the cis halides. The relative stability of the four rotamers correlates best with steric interactions between the 2-Me groups and the Me(2)SO ligands. The most favorable conformer (46%) is the HH rotamer with both 2-Me groups pointing away from the Me(2)SO ligands. The least favorable conformer (14%) was also HH, but the methyl groups in this case point toward the Me(2)SO ligands. In the HT conformers of intermediate stability ( approximately 20%), one 2-Me group is toward and the other is away from the Me(2)SO ligands. The exchange cross-peaks in the 2D spectra are unusually informative about the dynamic processes in solution; the spectra provide evidence that the rotamers interchange in a definite pattern of succession. Thus, all conceivable exchange pathways are not available. 1,2-Me(2)Im "b" can rotate regardless of the orientation of 1,2-Me(2)Im "a". 1,2-Me(2)Im "a" can rotate only when "b" has the orientation with its 2-Me group directed away from "a". Thus, 1,2-Me(2)Im "b" can switch 1,2-Me(2)Im "a" rotation on or off.  相似文献   

2.
利用密度泛函方法在B3LYP/6-31G(d)水平上对1,2-C2B10H12的两种异腈类衍生物的结构特性进行了研究. 结果表明, 1,2-C2B10H11NC的活性较强; 1,2-C2B10H11NC和1,2-C2B10H11CH2NC可以通过结构中的C4原子与过渡金属原子成键而形成碳硼烷异腈金属配合物. 1,2-C2B10H11NC和1,2-C2B10H11CH2NC的分子极性均比1,2-C2B10H12的弱, 这不利于它们在硼中子捕获疗法中的应用.  相似文献   

3.
Reduction of the tethered carborane 1,2-(CH2)3-1,2-closo-C2B10H10 followed by treatment with CoCl2/NaCp, [(p-cymene)RuCl2]2(p-cymene=C6H4MeiPr-1,4), (PMe2Ph)2PtCl2 or (dppe)NiCl2(dppe=Ph2PCH2CH2PPh2) affords reasonable yields of the new 13-vertex metallacarboranes 1,2-(CH2)3-4-Cp-4,1,2-closo-CoC2B10H10 (1), 1,2-(CH2)3-4-(p-cymene)-4,1,2-closo-RuC2B10H10 (2), 1,2-(CH2)3-4,4-(PMe2Ph)2-4,1,2-closo-PtC2B10H10 (3) and 1,2-(CH2)3-4,4-(dppe)-4,1,2-closo-NiC2B10H10 (4), respectively. All compounds were characterised spectroscopically and crystallographically. The cobalt and ruthenium species 1 and 2 have Cs symmetry in both solution and the solid state, having henicosahedral cage structures featuring a trapezoidal C1C2B9B5 face. The platinum and nickel compounds 3 and 4 have asymmetric docosahedral cage structures in the crystal (the more so for 4 than for 3) although both appear, by 11B and 31P NMR spectroscopy, to have Cs symmetry in solution. Low-temperature experiments on the more soluble platinacarborane could not freeze out the diamond-trapezium-diamond fluctional process that we assume is operating in solution, and we therefore conclude that this process has a relatively low activation barrier, probably <35 kJ mol-1.  相似文献   

4.
Reactions of alicyclic 2-hydroxyamino oximes with pentafluorophenylglyoxal afford mixtures of annelated derivatives of 2-pentafluorophenylpyrazine 1,4-dioxide and tetrafluoro- 10H-imidazo[1,2-b][1,2]benzooxazin-10-one. The structures of the latter were established by X-ray diffraction analysis.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1636–1639, August, 2004.  相似文献   

5.
Reaction of the lithium salt of 1-(2'-pyridyl)-ortho-carborane, Li[1-R-1,2-C(2)B(10)H(10)](R = 2'-NC(5)H(4)), with sulfur, followed by hydrolysis, gave the mercapto-o-carborane, 1-R-2-SH-1,2-C(2)B(10)H(10) which forms chiral crystals containing helical chains of molecules linked by intermolecular S-H...N hydrogen bonds. The cage C(1)-C(2) and exo C(2)-S bond lengths (1.730(3) and 1.775(2)[Angstrom], respectively) are indicative of exo S=C pi bonding. The tin derivative 1-R-2-SnMe(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and Me(3)SnCl, crystallises with no significant intermolecular interactions. The pyridyl group lies in the C(1)-C(2)-Sn plane, oriented to minimise the NSn distance (2.861(3)[Angstrom]). The tin environment is distorted trigonal bipyramidal with axial N and Me. The gold derivative 1-R-2-AuPPh(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and AuCl(PPh(3)), reveals no NAu interaction in its crystal structure.  相似文献   

6.
Reaction of the new precursor cis, trans-Ru(cod)(anln)2Cl2 with the diphosphine 1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane (o-dppc) unexpectedly results in two new ruthenium(II) hydrides, trans-Ru(o-dppc) 2(H)Cl and the neutral, five-coordinate complex Ru(o-dppc)(nido-dppc)(H), depending upon the reaction conditions [anln is aniline and nido-dppc is 7,8-(Ph2P)2C2B9H10(-)]. Chloride abstraction from trans-Ru(o-dppc)2(H)Cl leads to another five-coordinate hydride, [Ru(o-dppc)2(H)](+), which is isolated as either a triflate or hexafluorophosphate salt. On the basis of labeling and reactivity studies, the source of the hydride appears to be the cod ligand.  相似文献   

7.
Glycosidation of several vicinal diols reveals that exquisite regioselectivity can be achieved by using 2-O-benzoyl n-pentenyl glycoside donors and/or their cyclic 1,2-ortho ester counterparts. The regioselective preferences for both are the same, although ratios and yields may differ. In stark contrast, glycosidation of the diols with the corresponding 2-O-benzylated donors gives poor, if any, regioselectivity.  相似文献   

8.
微波辐射下蒙脱土K10固载氯化铁氧化二芳基乙醇酮   总被引:2,自引:0,他引:2  
微波辐射下以蒙脱土K-10固载氯化铁为氧化剂, 氧化二芳基乙醇酮生成二芳基乙二酮化合物, 反应时间短, 产率高, 操作简便, 污染小, 是一种有效的由二芳基乙醇酮氧化制备二芳基乙二酮的方法.  相似文献   

9.
The reaction of 3,4,5,7,8,9,10,11,12-I(9)-1,2-closo-C(2)B(10)H(3) with KOH/EtOH gave a mixture of the boron periodinated [1,2,3,4,5,6,9,10,11-I(9)-7,8-nido-C(2)B(9)H(2)](2-) and the highly iodinated on boron [1,2,4,5,6,9,10,11-I(8)-7,8-nido-C(2)B(9)H(3)](2-) in approximately 50% each. Moreover, 3,4,5,6,7,8,9,10,11,12-I(10)-1,2-closo-C(2)B(10)H(2) was reacted with KOH/EtOH to purely produce [1,2,3,4,5,6,9,10,11-I(9)-7,8-nido-C(2)B(9)H(2)](2-). It is the first dinegative dicarbollide stable in water or protic solvent reported in literature.  相似文献   

10.
A general synthesis of 10-Oxo-10H-pyrido[1,2-a]thieno[3,4-d]pyrimidines and 10-Oxo-10H-pyrido[1,2-a]-thieno[3,2-d]pyrimidines is described. Methyl tetrahydro-4-oxo-3-thiophenecarboxylate ( 13 ) was condensed with 6-aminonicotinic acid ( 18 ) to give 3,10-dihydro-10-oxo-1H-pyrido[1,2-a]thieno[3,4-d]pyrimidine-7-carboxylic acid ( 19 ). Treatment of 19 successively with chlorotrimethylsilane, N-chlorosuccinimide and water gave 10-oxo-10H-pyrido[1,2-a]thieno[3,4-d]pyrimidine-7-carboxylic acid ( 17 ). Methyl tetrahydro-3-oxo-2-thiophenecarboxylate ( 21 ) was converted to 10-oxo-10H-pyrido[1,2-a]thieno[3,2-d]pyrimidine-7-carboxylic acid ( 25 ) by an analogous route.  相似文献   

11.
On the basis of our previously described selective protection of arabitol as its 1,2:4,5-bis-pentylidene acetal 5, we report a straightforward synthesis of the novel "pseudo"-C(2)-symmetric 3-azido-1,2:4,5-diepoxypentane building block 4 in 6 steps from arabitol. Using a similar synthetic route, an improved synthesis of the C(2)-symmetrical 1,2:4,5-bis-epoxypentane building block 1 is described, also in 6 steps from arabitol. Both enantiomers of 1 and 4 are accessible, and all reactions involved are easily amenable for large-scale synthesis.  相似文献   

12.
The docosahedral metallacarboranes 4,4-(PMe(2)Ph)2-4,1,6-closo-PtC(2)B(10)H(12), 4,4-(PMe(2)Ph)2-4,1,10-closo-PtC(2)B(10)H(12), and [N(PPh(3))2][4,4-cod-4,1,10-closo-RhC(2)B(10)H(12)] were prepared by reduction/metalation of either 1,2-closo-C(2)B(10)H(12) or 1,12-closo-C(2)B(10)H(12). All three species were fully characterized, with a particular point of interest of the latter being the conformation of the {ML2} fragment relative to the carborane ligand face. Comparison with conformations previously established for six other ML(2)C(2)B(10) species of varying heteroatom patterns (4,1,2-MC(2)B(10), 4,1,6-MC(2)B(10), 4,1,10-MC(2)B(10), and 4,1,12-MC(2)B(10)) reveals clear preferences. In all cases a qualitative understanding of these was afforded by simple MO arguments applied to the model heteroarene complexes [(PH3)2PtC(2)B(4)H(6)]2- and [(PH3)2PtCB(5)H(6)]3-. Moreover, DFT calculations on [(PH3)2PtC(2)B(4)H(6)]2- in its various isomeric forms approximately reproduced the observed conformations in the 4,1,2-, 4,1,6-, and 4,1,10-MC(2)B(10) species, although analogous calculations on [(PH3)2PtCB(5)H(6)]3- did not reproduce the conformation observed in the 4,1,12-MC(2)B(10) metallacarborane. DFT calculations on (PH3)2PtC(2)B(10)H(12) yielded good agreement with experimental conformations in all four isomeric cases. Apparent discrepancies between observed and computed Pt-C distances were probed by further refinement of the 4,1,2- model to 1,2-(CH2)3-4,4-(PMe3)2-4,1,2-closo-PtC(2)B(10)H(10). This still has a more distorted structure than measured experimentally for 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10), but the structural differences lie on a very shallow potential energy surface. For the model compound a henicosahedral transition state was located 8.3 kcal mol(-1) above the ground-state structure, consistent with the fluxionality of 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10) in solution.  相似文献   

13.
Reduction of the tethered carborane 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) followed by metallation with {CpCo} or {(p-cymene)Ru} fragments affords both C,C'-dimethyl 4,1,2-MC(2)B(10) and 4,1,6-MC(2)B(10) species. DFT calculations indicate that the barriers to isomerisation of both 4-Cp-4,1,2-closo-CoC(2)B(10)H(12) and 4-(η-C(6)H(6))-4,1,2-closo-RuC(2)B(10)H(12) to their respective 4,1,6-isomers are too high for this to be the origin of the unexpected formation of 4,1,6-MC(2)B(10) products (in marked contrast to the related isomerisation of 1,2-closo-C(2)B(11)H(13) to 1,6-closo-C(2)B(11)H(13)), and, indeed, the 4,1,2-species are recovered unchanged from refluxing toluene. Equally, the DFT-calculated profile for the isomerisation of [7,8-nido-C(2)B(10)H(12)](2-) to [7,9-nido-C(2)B(10)H(12)](2-) suggests that the unexpected formation of 4,1,6-metallacarboranes is unlikely to result from isomerisation of a reduced (nido) carborane following desilylation. Instead, the source of the 4,1,6-MC(2)B(10) compounds is traced to desilylation of 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) by Li or Na prior to reduction. The supraicosahedral metallacarboranes 1,8-Me(2)-4-Cp-4,1,8-closo-CoC(2)B(10)H(10), 1,12-Me(2)-4-Cp-4,1,12-closo-CoC(2)B(10)H(10) and 1,12-Me(2)-4-(p-cymene)-4,1,12-closo-RuC(2)B(10)H(10) are also reported with all new species characterised both spectroscopically and crystallographically.  相似文献   

14.
Cyclization of N-aryl-3-oxobutanethioamides with 2-aminoimidazole and 2-aminobenzimidazole gave 7-methyl-5,8-dihydroimidazo[1,2-a]pyrimidine-5-thione or 2-methylpyrimido[1,2-a]benzimidazole-4(1H)-thione and 4-(arylamino)-2-methylpyrimido[1,2-a]benzimidazoles whose ratio depends on the nature of aryl substituents in the initial butanethioamides and on the presence of a protic solvent.  相似文献   

15.
Dithienylethenes containing the thiophene rings with benzothiazolyl substituents in position 2 were synthesized. 1,2-Bis[2-(benzothiazol-2-yl)benzothiophen-3-yl]hexafluorocyclopentene and 1,2-bis[2,5-di(benzothiazol-2-yl)-3-thienyl]hexafluorocyclopentene possess photochromic properties. The open forms of 1,2-bis(2-benzothiazolylhetaryl)ethenes fluoresce, but introduction of the benzothiazole rings into dihetarylethenes significantly lowers the fatigue resistance of photochromes and favors thermal reversibility.  相似文献   

16.
Using the synthesis of 1,2-bis(methylamino)ethane-1,2-diol dihydrochloride (5) as an example, it was demonstrated that aliphatic -aminocarbinols can be stabilized as hydrochlorides. The reaction of compound 5 with N-chloromethylamine in CHCl3 in the presence of K2CO3 afforded 1,2,1",2"-tetramethyl-3,3"-bidiaziridine as a mixture of diastereomers (a racemate and a meso form). The meso form was isolated in the individual state and its structure was established by X-ray diffraction analysis. The kinetics of inversional epimerization was studied.  相似文献   

17.
The molecular structures of 1,2-closo-P(2)B(10)H(10) (1) and 1,2-closo-As(2)B(10)H(10) (2) have been determined by gas electron diffraction and the results obtained compared with those from computation at the MP2/6-31G** level of theory. The level of agreement is good for 2 (root-mean-square [rms] misfit for As and B atoms 0.0297 ?) and very good for 1 (rms misfit for P and B atoms 0.0082 ?). In comparing the structures of 1 and 2 with that of 1,2-closo-C(2)B(10)H(12) (I) it is evident that expansion of the polyhedron from I to 1 to 2 is restricted only to the heteroatom vertices and the B(6) face to which these are bound. Following deboronation (at B3) and subsequent metallation, compounds 1 and 2 have been converted into the new metalladiheteroboranes 3-(η-C(9)H(7))-3,1,2-closo-CoAs(2)B(9)H(9) (4), 3-(η-C(10)H(14))-3,1,2-closo-RuAs(2)B(9)H(9) (5), 3-(η-C(5)H(5))-3,1,2-closo-CoP(2)B(9)H(9) (6), 3-(η-C(9)H(7))-3,1,2-closo-CoP(2)B(9)H(9) (7) and 3-(η-C(10)H(14))-3,1,2-closo-RuP(2)B(9)H(9) (8), the last three constituting the first examples of metalladiphosphaboranes. Together with the known compound 3-(η-C(5)H(5))-3,1,2-closo-CoAs(2)B(9)H(9) (3), compounds 4-8 have been analysed by NMR spectroscopy and (except for 8) single-crystal X-ray diffraction. The (11)B NMR spectra of analogous pairs of metalladiphosphaborane and metalladiarsaborane (6 and 3, 7 and 4, 8 and 5) reveal a consistently narrower (9-10 ppm) chemical shift range for the metalladiarsaboranes, the combined result of a deshielding of the lowest frequency resonance (B6) and an increased shielding of the highest frequency resonance (B8) via an antipodal effect. In crystallographic studies, compounds 3 and 5B (one of two crystallographically-independent molecules) suffer As/B disorder, but in both cases it was possible to refine distinct, ordered, components of the disorder, the first time this has been reported for metalladiarsaboranes. Moreover, whilst the Cp compounds 6 and 3 are disordered, their indenyl analogues 7 and 4 are either ordered or significantly less disordered, a consequence of both the reduced symmetry of an indenyl ligand compared to a Cp ligand and the preference of the former for a distinct conformation relative to the cage heteroatoms. Unexpectedly, whilst this conformation in the cobaltadiphosphaborane 7 is cis-staggered (similar to that previously established for the analogous cobaltadicarborane), in the cobaltadiarsaborane 4 the conformation is close to cis-eclipsed.  相似文献   

18.
1,2-O-Isopropylidene-α-l-glucurono-3,6-lactone may be synthesized on a 100-200 g scale from cheaply available d-glucoheptonolactone in an overall yield of 94% in four steps via l-glucuronolactone. Subsequent elaboration to l-glucose, diacetone-l-glucose (1,2:5,6-di-O-isopropylidene-α-l-glucofuranose), and monoacetone-l-glucose (1,2-O-isopropylidene-α-l-glucofuranose) allows easy access to a range of l-sugar chirons.  相似文献   

19.
The reaction of 3-azido-2,3-dideoxypyranose and 3-azido-2,3-dideoxy-2-halohexopyranose compounds with (diacetoxyiodo)benzene and iodine generated 2-azido-1,2-dideoxy-1-iodoalditols and 2-azido-1,2-dideoxy-1-halo-1-iodoalditols, respectively. These beta-iodo azides could be transformed by chemoselective dehydroiodination into 2-azido-1,2-dideoxy-4- O-formyl-pent-1-enitols and (Z, E)-2-azido-1,2-dideoxy-1-halo-4- O-formyl-pent-1-enitols in good yields. Thermolysis and photochemical studies of these vinyl azides and 1-halovinyl azides for the synthesis of polyhydroxylated 3-alkyl-2 H-azirines and the hitherto unknown 2-halo-3-alkyl-2 H-azirines have also been accomplished.  相似文献   

20.
The reactions of N"-acyl and N"-tosyl-substituted hydrazides of 2-aminobenzoic acid with aliphatic, aromatic, and heterocyclic aldehydes or aliphatic ketones afforded 3-acyl- and 3-tosylamido-1,2-dihydroquinazolin-4-one derivatives, respectively. The structures of the reaction products were established by NMR spectroscopy and X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号