首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Abstract

A number of deoxy and deoxyhalogeno analogues of moyo-inositol of Interest 1n Investigating the biochemical processes of the phosphoinositide pathway were synthesized. Syntheses Include those deoxyinositols (cyclohexane pentols) which correspond to myo-inositol deoxygenated at positions 1, 4 and 5, as well as a set of 5-deoxyhalogeno (F, Cl, Br, I) myo- and epimeric neo-inositols. Configurational assignments are based primarily on 1H NMR spectroscopy.  相似文献   

2.
Abstract

Aldol reaction of 1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-erythro-pentofuranos-3-ulose (1) with acetone in the presence of aqueous K2CO3 afforded 3-C-acetonyl-1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-ribofuranose(2). Similar reaction of 1,2:5, 6-di-o-isopropylidene- α-D-ribo-hexofuranos-3-ulose (3) afforded 3-C-acetonyl-1,2:5, 6-di-o-isopropylidene- α-D-allofuranose (4) and (1R, 3R, 7R, 8S, 10R)-perhydro-8-hydroxy-5,5,10-trimethyl-2,4,6,11,14-pentaoxatetracyclo[8,3,1,01,8,03,7] tetradecane. The stereochemistry of the new chiral centers were determined by 1H NOE experiments.  相似文献   

3.
Abstract

The reaction of 1,2:3,4-di-O-isopropylidene-6-O-triflyl-α-d-galactopyranose (4) with N, N-diphenyl-hydrazine in boiling benzene produced 6-deoxy-1,2:3,4-di-O-isopropylidene-6-(N', N'-diphenylhydrazino)-α-d-galactopyranose (2). The Pyrex-filtered irradiation of 2 in distilled 2-propanol produced 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-d-galactopyranose (5) and carbazole. The results obtained show that, while this procedure is a feasible route for aminodeoxy sugar synthesis, product yields are too low for this synthesis to be of general value.  相似文献   

4.
Partial deacetonation of 1-O-benzoyl-2,3:4,5-di-O-isopropylidene-β-D-fructopyranose (2) yielded the related 2,3-O-isopropylidene derivative (3) that was subsequently transformed into the corresponding 1-O-benzoyl-4,5-O-dibutylstannylene-2,3-O-isopropylidene-β-D-fructopyranose (4). Reaction of 4 with benzyl bromide proceeded with high regioselectivity to afford 1-O-benzoyl-5-O-benzyl-2/3-O-isopropylidene-β-D-fruc-topyranose (5) together with a small quantity of the 4-O-benzyl derivative (6). Oxidation of 5 gave the 4-oxo derivative (10) which was reduced to yield a mixture of 5 and its 4-epimer (11). Debenzylation of 11, followed by a debenzoylation reaction produced 2,3-O-isopropylidene-β-O-tagatopyranose (13). Aceto-nation of 13 yielded 1,2:3,4-di-O-isopropylidene-α-D-tagatofuranose (14). Structures and configurations of the above compounds were established on the basis of their analytical and spectroscopic data.  相似文献   

5.
Condensation reaction of 3,5-di-O-benzoyl-1,2-O-(1-cyanoben-zylidene)-β-D-arabinofuranose (2) with benzyl and allyl 2,3-di-O-benzoyl-5-O-triphenylmethyl-α-L-arabinofuranosides (5a and 5b) in methylene chloride in the presence of triphenylcarbenium tetrafluoroborate as catalyst under high vacuum gave α-(1→5)-linked dimeric D-arabinofuranoside derivatives (6a and 6b). One of the dimeric compounds (6a) was debenzoylated, triphenylmethylated, and rebenzoylated to give a dimeric homolog of 5a (8). Similarly for the preparation of 6a, 8 was condensed with 2 to provide an α-(1→5)-linked trimeric D-arabinofuranoside derivative (9). Further elongation of the glycoside chain might be possible in the same way.  相似文献   

6.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

7.
Reaction of methanesulfonate esters 73a and 3b with sodium azide in N, N-dimethylforaamide gave 6, 7-dideoxy-1,2:3,4-di-O-isopropylidene-α-D-galacto-6-heptyno-1,5-pyranose 5. The latter was identified by IR, NMR and mass spectrometry. A pathway for the unusual formation of an alkyne is proposed.  相似文献   

8.
Abstract

1,2-O-Cyclohexylidene-α-d-xylofuranuronic acid (2) has been converted into its 3-O-acetyl derivative and consecutively to the corresponding acid chloride and ethyl ester. Direct reaction of 2 with ethanol in the presence of p-to-luene sulphonic acid gave the ethyl ester. Reaction of 2 with phosphorus pentachloride in dry ether gave the acid chloride of 1,2-O-cyclohexylidene-3-O-dichlorophosphoryl–α-d-xylofuranuronic acid. Conformational data have been obtained from 1H and 13C NMR measurements.  相似文献   

9.
Abstract

In order to elucidate further the relationship between the composition of the fatty acyl groups in the nonreducing-sugar subunit of bacterial lipid A and its biological activity, 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-4-O-phosphono-D-glucose [GLA-63(R, R) and GLA-64(R, R)], and 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-4-O-phosphono-2-tetradecanamido-D-glucose [GLA-67(R), GLA-68(R) and GLA-69(R)] have been synthesized. Benzyl 2-[(3R)-3-(benzyloxymethoxy)tetradecanamido]-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (5) and benzyl 2-deoxy-4,6-O-isopropylidene-2-tetradecanamido-β-D-glucopyranoside (6) were each esterified with (3R)-3-dodecanoyloxytetradecanoic acid (1), (3R)-3-tetradecanoyloxytetradecanoic acid (2) or (3R)-3-hexadecanoyloxy-tetradecanoic acid (3), to give 7-11, which were then transformed, by the sequence of deisopropylidenation, 6-O-tritylation and 4-O-phosphorylation, into a series of desired compounds.  相似文献   

10.
The use of precipitation followed by acetylation procedures and preparative TLC purification allowed a facile isolation of four carbohydrates from the methanol extract of Pinus halepensis seeds. The isolated oligosaccharides exhibited high degree of purity. They were identified as α-D-galactosyl-(1→1)-myo-inositol nonaacetate (1), α-D-glucosyl-(1→2)-β-D-fructosyl octaacetate (2), α-D-galactosyl-(1→6)-α-D-glucosyl-(1→2)-β-D-frutosyl undecaacetate (3), and α-D-galactosyl-(1→6)-α-D-galactosyl-(1→6)-α-D-glucosyl-(1→2)-β-D-frutosyl tetradecaacetate (4) and were isolated for the first time from this plant. The 1H and 13C NMR assignments for compounds 2, 3, and 4 were detailed herein for the first time.  相似文献   

11.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

12.
A treatment of 2,3,5-tri-O-benzyl-B-D-ribofuranosyl fluoride (1) with cyanotrimethylsilane in the presence of boron trifluoride diethyl etherate gave 2,3,5-tri-O-benzyl-α- () and -β-D-ribofuranosyl () cyanide in 46.2% and 46.6% yields, respectively. Confirmation of the corresponding isocyano isomer (3) formation and its conversion into 2 under boron trifluoride catalysis at -78°C made it possible to deduce that both and were produced by way of 3 which was formed preponderantly in the initial stage of the reaction. On the other hand, the reaction of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride (4) with cyanotrimethylsilane in diethyl ether by the use of boron trifluoride diethyl etherate (0.05 mol. equiv.) gave 2,3,4,6-tetra-O-benzyl-α -D-glucopyranosyl cyanide (), 2,3,4,6-tetra-O-benzyl-α- (), and -β-D-glucopyranosyl isocyanide () as a 30:61:9 mixture (94% yield) but that in dichloromethane by the use of the catalyst (1.0 mol. equiv.) gave (85% yield) as a sole product.

The reactions of 1 and of 4 with allyltrirnethylsilane under the same catalysis afforded C-allyl 2,3,5-tri-O-benzyl-α-D-ribofuranoside (7)(93.5% yield), and C-allyl 2,3,4,6-tetra-O-benzyl-α- ()(71.8% yield) and -β-D-glucopyranoside () (22.4% yield), respectively.  相似文献   

13.
Condensation of p-nitrophenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside 3 with 2,3,4-tri-O-(chlorosulfonyl)-β-D-xylopyranosyl chloride by the Koenigs-Knorr method afforded the α-linked product in a high yield. Dechlorosulfation with sodium iodide and debenzoylation by the Zemplen method gave crystalline p-nitrophenyl 6-O-(α-D-xylopyranosyl)-β-D-glucopyranoside 7.

Compound 3 was condensed with 2,3,4-tri-O-benzoyl-α-D-xylopyranosyl bromide in the presence of mercury (II) cyanide in acetonitrile, and after debenzoylation, crystalline p-nitrophenyl 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside 10 was obtained.  相似文献   

14.
Abstract

The reactions of bromide, chloride, and iodide ions with 1,3,4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl) -α-D-glucopyranose (2) and with 1, 3, 4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl)-β-D-mannopyranose (3) gave good to excellent yields of the corresponding deoxyhalogeno sugars. In contrast, when the gluco triflate 2 and tetra-butylammonium fluoride were heated under reflux in benzene, only 5-(acetoxymethyl)-2-formylfuran (13) was formed. Reaction of the manno triflate 3 under similar conditions produced 1, 3,4, 6-tetra-O-acetyl-2-deoxy-2-fluoro-β-D-gluco-pyranose (17), 1. 3, 4. 6-tetra-O-acetyl-2-deoxy-β-D-erythro-hex-2-eno-pyranose (18), 4,6-di-O-acetyl-1, 5-anhydro-2-deoxy-D-erythro-hex-l-enitol-3-ulose (19), and 1, 2, 3, 4, 6-penta-O-acetyl-β-D-glucopyranose (20). The mechanisms of the reactions of The triflates 2 and 3 with fluoride ion are discussed.  相似文献   

15.
Bromoacetylation of methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-D-galactopyranoside, followed by the cleavage of the methoxy group from the resulting 6-O-bromoacetyl derivative 2 with 1,1-dichloromethyl methyl ether gave 2,4-di-0-benzoyl-6-0-bromoacetyl-3-deoxy-3-fluoro-α-D-galactopyranosyl chloride (3). Reaction of 3 with methyl 2,3,4-tri-O-benzoyl-β-D-galactopyranoside promoted by silver trifluoromethanesulfonate afforded methyl 0-(2,4-di-O-benzoyl-6-O-bromoacetyl-3-deoxy-3-fluoro-β-D-galacto-pyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-β-D-galactopyranoside (5). O-Debromoacetylation of 5 with thiourea gave the disaccharide nucleophile 6 which was condensed with 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl bromide to afford the expected β-(trans)-linked trisaccharide derivative 7. Debenzoylation of 7 gave the methyl β-glycoside 8 of the (1→6)-linked D-galactotriose having the HO-3 of the internal residue replaced by a fluorine atom. Compound 8 was used to further delineate the subsites in the combining area of the monoclonal anti-(1→6)-β-D-galactan-specific immunoglobulin IgA J539.  相似文献   

16.
Treatment of methyl 4-O-benzoyl-2, 6-dideoxy-β-D-arabino-hexopyranoside (6) with triflic anhydride in The presence of 2, 6-di-t-butyl-4-methylpyridine (7) produces methyl 4-O-benzoyl-2, 6-dideoxy-3-O-(tri-fluoromethylsulfonyl) -β-D-arabino-hexopyranoside (8), a compound which rearranges to a new and highly unstable triflate (10) upon standing at room temperature. Bromide ion reacts with 10 to give methyl 4-O-benzoyl-3-bromo-2,3,6-trideoxy-β-D-arabino-hexopyranoside (11), a product of displacement at C-3. A similar reaction takes place with nitrate ion to give methyl 4-O-benzoyl-2, 6-dideoxy-3-O-nitro-β-D)-arabino-hexopyranoside (15). Reaction of 10 with water and with tributyltin hydride results in capture of the cation 12, formed by ionization of 10, to give methyl 3-O-benzoyl-2,6-dideoxy-β-D-ribo-hexopyranoside (14) and methyl 3, 4-O-benzylidene-2, 6-dideoxy-β-D-ribo-hexopyranosi de (16), respectively. The cation 12 also reacts with methanol to afford the orthobenzoates 17 and 18.  相似文献   

17.
Tert-butyldimethylsilylation of dimethyl galactarate (1) with tert-butylchlorodimethylsilane/imidazole/N,N-dimethylformamide at 25 [ddot]C dimethyl 2,5-bis-O-(tert-butyldimethylsilyl)galactarate (2) as the principal product, with methyl 2,3,5-tris-O-(tert-butyldimethylsilyl)-D,L-galactarate-l,4-lactone (3) and methyl 2,3-bis-O-(tert-butyldimethyl)-D,L-galactarate-l,5-lactone (4) as minor products. When the reaction was carried out at 65 [ddot]C, the only product was the 1,4-lactone, 3 Ammonolysis of 2 in methanol gave 2,5-bis-O-(tert-butyldimethyl)-galactaramide (5, 94%), which was conveniently reduced with borane- THF to 1,6-diamino-1,6-dideoxygalactitol, isolated as its dihydrochloride 9. Ammonolysis of 3 in methanol gave a mixture of 5; 2,3,4-tris-O-(tert-butyldimethylsilyl)-D,L-galactaramide (6), 2,3,5-tris-O-(tert-butyldimethylsilyl)-D,L-galactaramide (7), and 2,3,5-tris-Q-(tert-butyldimethylsilyl)-D,L-1,4-lactonogalactaramide (8). Borane-THF reduction of a mixture of 6 and 7 also yielded 9. This study served as a model for the use of O-silylated carbohydrate amides in the preparation of aminodeoxyalditols.  相似文献   

18.
Abstract

3,6-Di-O-methyl-D-glucose, the non-reducing terminal sugar of the phenolic glycolipid-I, elaborated by Mycobacterium leprae, has been synthesized by a simple procedure and in high yield. 3-O-Methyl-D-glucose was converted to the corresponding benzyl glycoside and then tosylated to give benzyl 3-O-methyl-6-O-tosyl-β-D-glucopyranoside. Displacement of tosyl group with sodium methoxide followed by debenzylation afforded 3,6-di-O-methyl-D-glucose in high yield. Condensation of the acetobromo derivative of 3,6-di-O-methyl-D-glucose with 8-ethoxycarbonyloctanol gave 8-ethoxycarbonyloctyl 2,4-di-O-acety 1–3, 6-di-O-methy 1-β-D-glucopyranoside. This was then deacetylated, converted to hydrazide, and finally coupled to bovine serum albumin via the acyl azide intermediate. The neo-glycoprotein containing the 3,6-di-O-methyl-β-D-glucopyranosyl group is useful for serodiagnosis of leprosy.  相似文献   

19.
Abstract

A synthesis for L-streptose (1) is described. This synthesis differs from those previously reported in several ways, one of which is the use of photochemical reactions in two important steps. These reactions are part of a sequence leading from L-arabinose (2) to 5-deoxy-1,2-O-isopropylidene-β-L-threo-pentofuranos-3-ulose (3). Two other photochemical reactions are considered as a part of the conversion of 3 into L-streptose (1) but neither proved useful. L-Streptose (1) is synthesized from 3 by a sequence of reactions which involves formation of 5-deoxy-l,2-O-isopropylidene-3-C-nitromethyl-β-L-lyxo-furanose (10) and subsequent reaction of 10 with titanium(III) chloride.  相似文献   

20.
Methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-S-acetyl-3,5-di-deoxy-2-thio-D-glycero-α-D-galacto-2-nonulopyranosonate (2) was prepared via methyl 5-acetamTdo-4,7,8,9-tetra-O-acetyl-2-chloro-2,3,5-trideoxy-D-glycero-α-D-galacto-2-nonulopyranosonate (1) and was converted into the sodium salt (3). Condensation of 3 with n-alkyl bromides gave the corresponding methyl (alkyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-α-D-galacto-2-nonulo-pyranosid)onates, which were converted, via O-deacetylation and hydrolysis of the methyl ester group, into the title compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号