首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴勇旗 《中国物理快报》2008,25(8):2739-2742
One- and two-periodic wave solutions for (3+l)-dimensional Boussinesq equation are presented by means of Hirota's bilinear method and the Riemann theta function. The soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.  相似文献   

2.
Dynamical system theory is applied to the integrable nonlinear wave equation $u_t±(u^3−u^2)x+(u^3)xxx=0$. We obtain the single peak solitary wave solutions and compacton solutions of the equation. Regular compacton solution of the equation corresponds to the case of wave speed $c$=0. In the case of $c^6$≠0, we find smooth soliton solutions. The influence of parameters of the traveling wave solutions is explored by using the phase portrait analytical technique. Asymptotic analysis and numerical simulations are provided for these soliton solutions of the nonlinear wave equation.  相似文献   

3.
The N-soliton solutions of magnetization in uniaxial anisotropic ferromagnet on the background of spin wave are presented by using the effective Darboux transformation method. With the analytical solutions new properties of magnon density is studied in detail. On the ground state background the magnon density is constant for the spin wave solution and the magnetic soliton, respectively. However, on the spin wave background the magnon density possesses of temporal or spatial periodic oscillation. Moreover, the soliton solution possess the breather character in its propagation along the ferromagnet. These results show that during soliton propagation a periodic magnon exchange occurs between the magnetic soliton and the spin wave background.  相似文献   

4.
New exact periodic wave solutions for the 2D Ginzburg-Landau equation are obtained using the homogeneous balance principle and general Jacobi elliptic-function method. Furthermore, a blow up solution is provided. At the end, some properties about these solutions are showed by the graphs.  相似文献   

5.
In this paper, via the extended tanh-function approach, the abundant exact solutions for discrete complex cubic-quintic Ginzburg-Landau equation, including chirpless bright soliton, chirpless dark soliton, constant magnitude solution (plane wave solution), triangular function solutions and some solutions with alternating phases, etc. are obtained. Meanwhile, the range of parameters where some exact solution exist are given. Among these solutions, solutions with alternating phases do not have continuous analogs. Moreover, in the lattice, the points of singularity of tan-type and sec-type solutions can be ‘between sites’ and thus the singularities can be avoided.  相似文献   

6.
In this paper, we analyze the relation between the shape of the bounded traveling wave solutions and dissipation coefficient of nonlinear wave equation with cubic term by the theory and method of planar dynamical systems. Two critical values which can characterize the scale of dissipation effect are obtained. If dissipation effect is not less than a certain critical value, the traveling wave solutions appear as kink profile; while if it is less than this critical value, they appear as damped oscillatory. All expressions of bounded traveling wave solutions are presented, including exact expressions of bell and kink profile solitary wave solutions, as well as approximate expressions of damped oscillatory solutions. For approximate damped oscillatory solution, using homogenization principle, we give its error estimate by establishing the integral equation which reflects the relations between the exact and approximate solutions. It can be seen that the error is an infinitesimal decreasing in the exponential form.  相似文献   

7.
Using the homogenous balance method, the nonlinear transformations of the (2+1)-dimensional integrable Konopelchenko-Dubrovsky equation are given, and then some new special types of single solitary wave solution and the multisoliton solutions are constructed. The project is supported by the Natural Science Foundation of Shandong Province in China and the Natural Science Foundation of Liaocheng University.  相似文献   

8.
徐园芬 《物理学报》2013,62(10):100202-100202
利用动力系统方法研究一维Tonks-Girardeau原子气区域中Gross-Pitaevskii (GP)方程简化模型的一些精确行波解以及这些精确行波解的动力学行为, 研究系统的参数对行波解的动力学行为的影响. 在不同的参数条件下, 获得了一维Tonks-Girardeau原子气区域中GP方程简化模型的六个行波解的精确参数表达式. 关键词: 动力系统方法 孤立波解 周期波解 扭波解  相似文献   

9.
Travelling wave-like solutions of the Zakharov-Kuznetsov equation with variable coefficients are studied using the solutions of Raccati equation. The solitary wave-like solution, the trigonometric periodic wave solution and the rational wave solution are obtained with a constraint between coefficients. The property of the solutions is numerically investigated. It is shown that the coefficients of the equation do not change the wave amplitude, but may change the wave velocity.   相似文献   

10.
Multi-dimensional vortex modes of a quasi-simple wave solution is presented. These are constructed on the basis of vortex modes for ideal simple waves. A version of 2D Burgers equation is derived which is the same as that obtained for sound quasi-simple waves if neglecting the last term of the latter. Some solutions are explained in physical detail which have a localized traveling behavior. A numerical simulation is shown to support the obtained analytical solutions.  相似文献   

11.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

12.
TE-polarized electromagnetic waves guided by a three-layer structure consisting of a film surrounded by semi-infinite media (all media are characterized by a Kerrlike dielectric function) are investigated by expressing the solution of the field equations in terms of Weierstrass' elliptic functions. Evaluation leads to a universal dispersion relation and its solutions and a universal expression for the power flow. Numerical results are presented for the effective wave number as a function of the intensity of the electric field at the lower surface of the nonlinear film, for various profiles of the field intensity, and for the power flow as a function of the effective wave number.  相似文献   

13.
A scheme is developed to study numerical solution of the time-fractional shock wave equation and wave equation under initial conditions by the homotopy perturbation method (HPM). The fractional derivatives are taken in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical results are illustrated through the graph.  相似文献   

14.
徐昌智  何宝钢  张解放 《中国物理》2004,13(11):1777-1783
A variable separation approach is proposed and extended to the (1+1)-dimensional physical system. The variable separation solutions of (1+1)-dimensional equations of long-wave-short-wave resonant interaction are obtained. Some special type of solutions such as soliton solution, non-propagating solitary wave solution, propagating solitary wave solution, oscillating solitary wave solution are found by selecting the arbitrary function appropriately.  相似文献   

15.
With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Schrödinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.  相似文献   

16.
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.  相似文献   

17.
Using the tanh method and a variable separated ordinary difference equation method to solve the double sineGordon equation, we derive some new exact travelling wave solutions, especially a new type of noncontinuous solitary wave solutions. These noncontinuous solitary wave solutions are verified by using the conservation law theory.  相似文献   

18.
A new approach to the perturbative analysis of dynamical systems, which can be described approximately by soliton solutions of integrable non-linear wave equations, is employed in the case of small-amplitude solutions of the ion acoustic wave equations of plasma physics. Instead of pursuing the traditional derivation of a perturbed KdV equation, the ion velocity is written as a sum of two components: elastic and inelastic. In the single-soliton case, the elastic component is the full solution. In the multiple-soliton case, it is complemented by the inelastic component. The original system is transformed into two evolution equations: An asymptotically integrable Normal Form for ordinary KdV solitons, and an equation for the inelastic component. The zero-order term of the elastic component is a single-soliton or multiple-soliton solution of the Normal Form. The inelastic component asymptotes into a linear combination of single-soliton solutions of the Normal Form, with amplitudes determined by soliton interactions, plus a second-order decaying dispersive wave. Satisfaction of a conservation law by the inelastic component and of mass conservation by the disturbance to the ion density is determined solely by the initial data and/or boundary conditions imposed on the inelastic component. The electrostatic potential is a first-order quantity. It is affected by the inelastic component only in second order. The charge density displays a triple-layer structure. The analysis is carried out through the third order.  相似文献   

19.
Hirota method is used to directly construct quasi-periodic wave solutions for the nonisospectral soliton equation.One and two quasi-periodic wave solutions for the variable-coefficient KdV equation are studied.The well known one-soliton solution can be reduced from the one quasi-periodic wave solution.  相似文献   

20.
We apply light-front quantization, Pauli-Villars regularization, and numerical techniques to the nonperturbative solution of the dressed-fermion problem in Yukawa theory in 3 + 1 dimensions. The solution is developed as a Fock-state expansion truncated to include at most one fermion and two bosons. The basis includes a negative-metric heavy boson and a negative-metric heavy fermion to provide the necessary cancellations of ultraviolet divergences. The integral equations for the Fock-state wave functions are solved by reducing them to effective one-boson-one-fermion equations for eigenstates with Jz = 1/2. The equations are converted to a matrix equation with a specially tuned quadrature scheme, and the lowest mass state is obtained by diagonalization. Various properties of the dressed-fermion state are then computed from the nonperturbative light-front wave functions. This work is a major step in our development of Pauli-Villars regularization for the nonperturbative solution of four-dimensional field theories and represents a significant advance in the numerical accuracy of such solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号