首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
For a class of infinite-horizon optimal control problems that appear in studies on economic growth processes, the properties of the adjoint variable in the relations of the Pontryagin maximum principle, defined by a formula similar to the Cauchy formula for the solutions to linear differential systems, are studied. It is shown that under a dominating discount type condition the adjoint variable defined in this way satisfies both the core relations of the maximum principle (the adjoint system and the maximum condition) in the normal form and the complementary stationarity condition for the Hamiltonian. Moreover, a new economic interpretation of the adjoint variable based on this formula is presented.  相似文献   

2.
The paper deals with first order necessary optimality conditions for a class of infinite-horizon optimal control problems that arise in economic applications. Neither convergence of the integral utility functional nor local boundedness of the optimal control is assumed. Using the classical needle variations technique we develop a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable under weak regularity assumptions. The result generalizes some previous results in this direction. An illustrative economical example is presented.  相似文献   

3.
We consider a class of infinite-horizon optimal control problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of that kind the initial state is fixed, no constraints are imposed on the behavior of the admissible trajectories at infinity, and the objective functional is given by a discounted improper integral. Earlier, for such problems, S.M. Aseev and A.V. Kryazhimskiy in 2004–2007 and jointly with the author in 2012 developed a method of finite-horizon approximations and obtained variants of the Pontryagin maximum principle that guarantee normality of the problem and contain an explicit formula for the adjoint variable. In the present paper those results are extended to a more general situation where the instantaneous utility function need not be locally bounded from below. As an important illustrative example, we carry out a rigorous mathematical investigation of the transitional dynamics in the neoclassical model of optimal economic growth.  相似文献   

4.
We consider a nonautonomous optimal control problem on an infinite time horizon with an integral functional containing a positive discounting factor. In the case of a dominating discounting factor, we obtain a variant of the Pontryagin maximum principle that contains explicit expressions for the adjoint variable and the Hamiltonian of the problem.  相似文献   

5.
A maximum principle is developed for a class of problems involving the optimal control of a damped-parameter system governed by a linear hyperbolic equation in one space dimension that is not necessarily separable. A convex index of performance is formulated, which consists of functionals of the state variable, its first- and second-order space derivatives, its first-order time derivative, and a penalty functional involving the open-loop control force. The solution of the optimal control problem is shown to be unique. The adjoint operator is determined, and a maximum principle relating the control function to the adjoint variable is stated. The proof of the maximum principle is given with the help of convexity arguments. The maximum principle can be used to compute the optimal control function and is particularly suitable for problems involving the active control of structural elements for vibration suppression.  相似文献   

6.
This paper deals with optimal control problems for semilinear parabolic differential equations, which may be governed by nonmonotone operators and have no global solution, with periodic inputs. The Pontryagin maximum principle is obtained and the Carleman inequality for the backward linearized adjoint system associated with the state system is established.  相似文献   

7.
We prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a stochastic partial differential equation driven by a finite dimensional Wiener process. The equation is formulated in a semi-abstract form that allows direct applications to a large class of controlled stochastic parabolic equations. We allow for a diffusion coefficient dependent on the control parameter, and the space of control actions is general, so that in particular we need to introduce two adjoint processes. The second adjoint process takes values in a suitable space of operators on L 4.  相似文献   

8.
We consider an optimal control problem in which the dynamic equation and cost function depend on the recent past of the trajectory. The regularity assumed in the basic data is Lipschitz continuity with respect to the sup norm. It is shown that, for a given optimal solution, an adjoint arc of bounded variation exists that satisfies an associated Hamiltonian inclusion. From this result, known smooth versions of the Pontryagin maximum principle for hereditary problems can be easily derived. Problems with Euclidean endpoint constraints are also considered.  相似文献   

9.
We consider optimal control problems with constraints at intermediate points of the trajectory. A natural technique (propagation of phase and control variables) is applied to reduce these problems to a standard optimal control problem of Pontryagin type with equality and inequality constraints at the trajectory endpoints. In this way we derive necessary optimality conditions that generalize the Pontryagin classical maximum principle. The same technique is applied to so-called variable structure problems and to some hybrid problems. The new optimality conditions are compared with the results of other authors and five examples illustrating their application are presented.  相似文献   

10.
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.  相似文献   

11.
We derive nonlocal necessary optimality conditions, which efficiently strengthen the classical Pontryagin maximum principle and its modification obtained by B. Ka?kosz and S. ?ojasiewicz as well as our previous result of a similar kind named the “feedback minimum principle.” The strengthening of the feedback minimum principle (and, hence, of the Pontryagin principle) is owing to the employment of two types of feedback controls “compatible” with a reference trajectory (i.e., producing this trajectory as a Carath´eodory solution). In each of the versions, the strengthened feedback minimum principle states that the optimality of a reference process implies the optimality of its trajectory in a certain family of variational problems generated by cotrajectories of the original and compatible controls. The basic construction of the feedback minimum principle—a perturbation of a solution to the adjoint system—is employed to prove an exact formula for the increment of the cost functional. We use this formula to obtain sufficient conditions for the strong and global minimum of Pontryagin’s extremals. These conditions are much milder than their known analogs, which require the convexity in the state variable of the functional and of the lower Hamiltonian. Our study is focused on a nonlinear smooth Mayer problem with free terminal states. All assertions are illustrated by examples.  相似文献   

12.
Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory.  相似文献   

13.
A class of infinite-horizon optimal control problems that arise in economic applications is considered. A theorem on the nonemptiness and boundedness of the set of optimal controls is proved by the method of finite-horizon approximations and the apparatus of the Pontryagin maximum principle. As an example, a simple model of optimal economic growth with a renewable resource is considered.  相似文献   

14.
In the present paper, we prove a substantially improved version of the Pontryagin maximum principle for convex multidimensional control problems of Dieudonné-Rashevsky type. Although the range of the operator describing the first-order PDE system involved in this problem has infinite codimension, we obtain first-order necessary conditions in a completely analogous form as in the one-dimensional case. Furthermore, the adjoint variables are subjected to a Weyl decomposition. We reformulate two basic problems of mathematical image processing (determination of optical flow and shape from shading problem) within the framework of optimal control, which gives the possibility to incorporate hard constraints in the problems. In the convex case, we state the necessary optimality conditions for these problems.  相似文献   

15.
This paper is concerned with optimal control of neutral stochastic functional differential equations (NSFDEs). The Pontryagin maximum principle is proved for optimal control, where the adjoint equation is a linear neutral backward stochastic functional equation of Volterra type (VNBSFE). The existence and uniqueness of the solution are proved for the general nonlinear VNBSFEs. Under the convexity assumption of the Hamiltonian function, a sufficient condition for the optimality is addressed as well.  相似文献   

16.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of these problems which can be transformed to index one control problems. For this class of higher index DAEs, we derive first-order approximations and adjoint equations for the functionals defining the problem. These adjoint equations are then used to state, in the accompanying paper, the necessary optimality conditions in the form of a weak maximum principle. The constructive way used to prove these optimality conditions leads to globally convergent algorithms for control problems with state constraints and defined by higher index DAEs.  相似文献   

17.
This paper is devoted to the study of a class of control problems associated to a nonlinear second-order vector differential equation with pointwise state constraints. The control is realized via a function of the state. We extend the results of Akkouchi, Bounabat, and Goebel to vector differential equations and furthermore consider the more general case. Under proper conditions, we prove the existence of optimal controls in the class of Lipschitz functions and obtain an optimality condition which looks somehow like the Pontryagin maximum principle for a smooth optimal control function. For a nonsmooth optimal control function, we derive a suboptimality condition by means of the Ekeland variational principle.Communicated by M. J. BalasThis work was supported by 985 Project of Jilin University. The author thanks Professor Yong Li for valuable suggestions. He also thanks Professor M. J. Balas and the anonymous referees for their comments.  相似文献   

18.
In this paper, we formulate and study a general optimal control problem governed by nonlinear operator equations described by unbounded self-adjoint operators in Hilbert spaces. This problem extends various particular control models studied in the literature, while it has not been considered before in such a generality. We develop an efficient way to construct a finite-dimensional subspace extension of the given self-adjoint operator that allows us to design the corresponding adjoint system and finally derive an appropriate counterpart of the Pontryagin Maximum Principle for the constrained optimal control problem under consideration by using the obtained increment formula for the cost functional and needle type variations of optimal controls.  相似文献   

19.
This paper is concerned with partially-observed optimal control problems for fully-coupled forward-backward stochastic systems. The maximum principle is obtained on the assumption that the forward diffusion coefficient does not contain the control variable and the control domain is not necessarily convex. By a classical spike variational method and a filtering technique, the related adjoint processes are characterized as solutions to forward-backward stochastic differential equations in finite-dimensional spaces. Then, our theoretical result is applied to study a partially-observed linear-quadratic optimal control problem for a fully-coupled forward-backward stochastic system and an explicit observable control variable is given.  相似文献   

20.
In this work, we shall consider standard optimal control problems for a class of neutral functional differential equations in Banach spaces. As the basis of a systematic theory of neutral models, the fundamental solution is constructed and a variation of constants formula of mild solutions is established. We introduce a class of neutral resolvents and show that the Laplace transform of the fundamental solution is its neutral resolvent operator. Necessary conditions in terms of the solutions of neutral adjoint systems are established to deal with the fixed time integral convex cost problem of optimality. Based on optimality conditions, the maximum principle for time varying control domain is presented. Finally, the time optimal control problem to a target set is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号