首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Given a sphere of any radius r in an n-dimensional Euclidean space, we study the coverings of this sphere with solid spheres of radius one. Our goal is to design a covering of the lowest covering density, which defines the average number of solid spheres covering a point in a bigger sphere. For growing dimension n, we design a covering that gives the covering density of order (nln n)/2 for a sphere of any radius r>1 and a complete Euclidean space. This new upper bound reduces two times the order nln n established in the classic Rogers bound.  相似文献   

2.
The minimum size of a binary covering code of length n and covering radius r is denoted by K(n,r), and codes of this length are called optimal. For j > 0 and n = 2j, it is known that K(n,1) = 2 · K(n?1,1) = 2n ? j. Say that two binary words of length n form a duo if the Hamming distance between them is 1 or 2. In this paper, it is shown that each optimal binary covering code of length n = 2j, j > 0, and covering radius 1 is the union of duos in just one way, and that the closed neighborhoods of the duos form a tiling of the set of binary words of length n. Methods of constructing such optimal codes from optimal covering codes of length n ? 1 (that is, perfect single‐error‐correcting codes) are discussed. The paper ends with the construction of an optimal covering code of length 16 that does not contain an extension of any optimal covering code of length 15. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

3.
We show that the covering radius R of an [n,k,d] code over Fq is bounded above by R n-n q(k, d/q). We strengthen this bound when R d and find conditions under which equality holds.As applications of this and other bounds, we show that all binary linear codes of lengths up to 15, or codimension up to 9, are normal. We also establish the normality of most codes of length 16 and many of codimension 10. These results have applications in the construction of codes that attain t[n,k,/it>], the smallest covering radius of any binary linear [n,k].We also prove some new results on the amalgamated direct sum (ADS) construction of Graham and Sloane. We find new conditions assuring normality of the ADS; covering radius 1 less than previously guaranteed for ADS of codes with even norms; good covering codes as ADS without the hypothesis of normality, from concepts p- stable and s- stable; codes with best known covering radii as ADS of two, often cyclic, codes (thus retaining structure so as to be suitable for practical applications).  相似文献   

4.
The minimum size of a binary covering code of length n and covering radius r is denoted by K (n, r) and corresponding codes are called optimal. In this article a classification up to equivalence of all optimal covering codes having either length at most 8 or cardinality at most 4 is completed. Moreover, we prove that K (9, 2) = 16. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 391–401, 2000  相似文献   

5.
We prove that the covering radius of the Reed-Muller code R(1, 9) in R(4, 9) is 240, not exceeding the quadratic bound.Research supported by NSA Grant MDA 904-93-H-3025  相似文献   

6.
The covering radius problem is a question in coding theory concerned with finding the minimum radius r such that, given a code that is a subset of an underlying metric space, balls of radius r over its code words cover the entire metric space. Klapper (IEEE Trans. Inform. Theory 43:1372–1377, 1997) introduced a code parameter, called the multicovering radius, which is a generalization of the covering radius. In this paper, we introduce an analogue of the multicovering radius for permutation codes (Des. Codes Cryptogr. 41:79–86, cf. 2006) and for codes of perfect matchings (cf. 2012). We apply probabilistic tools to give some lower bounds on the multicovering radii of these codes. In the process of obtaining these results, we also correct an error in the proof of the lower bound of the covering radius that appeared in (Des. Codes Cryptogr. 41:79–86, cf. 2006). We conclude with a discussion of the multicovering radius problem in an even more general context, which offers room for further research.  相似文献   

7.
The multicovering radii of a code are recentgeneralizations of the covering radius of a code. For positivem, the m-covering radius of C is the leastradius t such that everym-tuple of vectors is contained in at least one ball of radiust centered at some codeword. In this paper upper bounds arefound for the multicovering radii of first order Reed-Muller codes. These bounds generalize the well-known Norse bounds for the classicalcovering radii of first order Reed-Muller codes. They are exactin some cases. These bounds are then used to prove the existence of secure families of keystreams against a general class of cryptanalytic attacks. This solves the open question that gave rise to the study ofmulticovering radii of codes.  相似文献   

8.
It is proved that the covering radius of a primitive binary BCH code of length q-1 and designed distance 2t+1, where is exactly 2t-1 (the minimum value possible). The bound for q is significantly lower than the one obtained by O. Moreno and C. J. Moreno [9].  相似文献   

9.
It is shown that if there exists a binary code C of length d and covering radius k then a zonotope in the d-dimensional Euclidean space can be illuminated by |C| affine subspaces of dimension k. Applying results from coding theory, the exact value of the illumination numbers of d-dimensional parallelotopes is determined in some special cases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
11.
On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R=2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r=2k+1 (the case q=3, r=4k+1 was considered earlier). New code families with r=4k are also obtained. An updated table of upper bounds on the length function for linear codes with 24, R=2, and q=3,5 is given.  相似文献   

12.
Using Ahlfors' covering surface method, some properties on Borel radius of meromorphic functions with finite order in the unit circle are obtained. The main object of this paper is to prove the existence of filling discs in Borel radius of such functions, which briefly extends the results of A. Rauch.  相似文献   

13.
An updated table of K2,3(b,t;R)—the minimum cardinality of a code with b binary coordinates, t ternary coordinates, and covering radius R—is presented for b + t ≤ 13, R ≤ 3. The results include new explanations of short binary and ternary covering codes, several new constructions and codes, and a general lower bound for R = 1. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
Basically this paper deals with the determination of the radius of starlikeness and radius of univalence of the class of meromorphic functions of the formg(z)=A/z−Φ(z) forA>0, and where Φ(z) is an analytic function defined in the unit disk whose modulus does not exceed unity. We estimate the radius ofp-valence of functions having the fromh(z)=Φ(z)+a/z p fora>1,p≧1, and also estimate the radius of starlikeness of certain Blaschke products which is also given as a function of the minimum modulus function. We discuss the question of sharpness of the results and mention some open problems.  相似文献   

15.
Let K(n,r) denote the minimum cardinality of a binary covering code of length n and covering radius r. Constructions of covering codes give upper bounds on K(n,r). It is here shown how computer searches for covering codes can be sped up by requiring that the code has a given (not necessarily full) automorphism group. Tabu search is used to find orbits of words that lead to a covering. In particular, a code D found which proves K(13,1) 704, a new record. A direct construction of D given, and its full automorphism group is shown to be the general linear group GL(3,3). It is proved that D is a perfect dominating set (each word not in D is covered by exactly one word in D) and is a counterexample to the recent Uniformity Conjecture of Weichsel.  相似文献   

16.
The covering radius of binary 2-surjective codes of maximum length is studied in the paper. It is shown that any binary 2-surjective code of M codewords and of length has covering radius if M − 1 is a power of 2, otherwise . Two different combinatorial proofs of this assertion were found by the author. The first proof, which is written in the paper, is based on an existence theorem for k-uniform hypergraphs where the degrees of its vertices are limited by a given upper bound. The second proof, which is omitted for the sake of conciseness, is based on Baranyai’s theorem on l-factorization of a complete k-uniform hypergraph.   相似文献   

17.
A new quaternary linear code of length 19, codimension 5, and covering radius 2 is found in a computer search using tabu search, a local search heuristic. Starting from this code, which has some useful partitioning properties, different lengthening constructions are applied to get an infinite family of new, record-breaking quaternary codes of covering radius 2 and odd codimension. An algebraic construction of covering codes over alphabets of even characteristic is also given.  相似文献   

18.
We introduce a refinement in the method proposed some time ago by Haas for obtaining new lower bounds for the cardinality of codes with covering radius 1. As an application, we show that the minimal cardinality of a binary code in dimension 27 with covering radius 1 is at least .  相似文献   

19.
An undesirable facility is to be located within some feasible region of any shape in the plane or on a planar network. Population is supposed to be concentrated at a finite number n of points. Two criteria are taken into account: a radius of influence to be maximised, indicating within which distance from the facility population disturbance is taken into consideration, and the total covered population, i.e. lying within the influence radius from the facility, which should be minimised. Low complexity polynomial algorithms are derived to determine all nondominated solutions, of which there are only O(n3) for a fixed feasible region or O(n2) when locating on a planar network. Once obtained, this information allows almost instant answers and a trade-off sensitivity analysis to questions such as minimising the population within a given radius (minimal covering problem) or finding the largest circle not covering more than a given total population.  相似文献   

20.
The minimum number of rows in covering arrays (equivalently, surjective codes) and radius-covering arrays (equivalently, surjective codes with a radius) has been determined precisely only in special cases. In this paper, explicit constructions for numerous best known covering arrays (upper bounds) are found by a combination of combinatorial and computational methods. For radius-covering arrays, explicit constructions from covering codes are developed. Lower bounds are improved upon using connections to orthogonal arrays, partition matrices, and covering codes, and in specific cases by computation. Consequently for some parameter sets the minimum size of a covering array is determined precisely. For some of these, a complete classification of all inequivalent covering arrays is determined, again using computational techniques. Existence tables for up to 10 columns, up to 8 symbols, and all possible strengths are presented to report the best current lower and upper bounds, and classifications of inequivalent arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号