首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
The aryl-substituted N-picolylethylenediamine and diethylenetriamine ligands, (ArNHCH(2)CH(2))[(2-C(5)H(4)N)CH(2)]NH and (ArNHCH(2)CH(2))(2)NH (Ar = 2,6-Me(2)C(6)H(3), 2,4,6-Me(3)C(6)H(2)), have been prepared by employing palladium-catalysed N-C(aryl) coupling reactions of the corresponding primary amines with aryl bromide. Treatment of MCl(2) with (ArNHCH(2)CH(2))[(2-C(5)H(4)N)CH(2)]NH affords [[(ArNHCH(2)CH(2))((2-C(5)H(4)N)CH(2))NH]CoCl(2)](Ar = 2,6-Me(2)C(6)H(3) 1a; 2,4,6-Me(3)C(6)H(2)) 1b and [[(ArNHCH(2)CH(2))((2-C(5)H(4)N)CH(2))NH]FeCl(2)](n)(n= 1, Ar = 2,6-Me(2)C(6)H(3) 2a; n= 2, 2,4,6-Me(3)C(6)H(2) 2b) in high yield. The X-ray structures of 1a and 1b are isostructural and reveal the metal centres to adopt distorted trigonal bipyramidal geometries with the N,N,N-chelates adopting fac-structures. A facial coordination mode of the ligand is also observed in bimetallic 2b, however, in 2a the N,N,N-chelate adopts a mer-configuration with the metal centre adopting a geometry best described as square pyramidal. Solution studies indicate that mer-fac isomerisation is a facile process for these systems at room temperature. Quantum mechanical calculations (DFT) have been performed on 1a and 2a, in which the ligands employed are identical, and show the fac- to be marginally more stable than the mer-configuration for cobalt (1a) while for iron (2a) the converse is evident. Reaction of (ArNHCH(2)CH(2))(2)NH with CoCl(2) gave the five-coordinate complexes [[(ArNHCH(2)CH(2))(2)NH]CoCl(2)](Ar = 2,6-Me(2)C(6)H(3) 3a, 2,4,6-Me(3)C(6)H(2) 3b), in which the ligand adopts a mer-configuration; no reaction occurred with FeCl(2). All complexes 1-3 act as modest ethylene oligomerisation catalysts on activation with excess methylaluminoxane (MAO); the iron systems giving linear alpha-olefins while the cobalt systems give mixtures of linear and branched products.  相似文献   

2.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

3.
Cao DK  Li YZ  Song Y  Zheng LM 《Inorganic chemistry》2005,44(10):3599-3604
Based on the [hydroxy(4-pyridyl)methyl]phosphonate ligand, three compounds with formula Ni{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (1), Cd{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (2), and Gd{(4-C(5)H(4)N)CH(OH)P(OH)O(2)}(3).6H(2)O (3) have been synthesized under hydrothermal conditions. The crystal data for 1 are as follows: orthorhombic, space group Pbca, a = 8.7980(13) A, b = 10.1982(15) A, and c = 17.945(3) A. For 2 the crystal data are as follows: monoclinic, space group C2/c, a = 23.344(6) Angstroms, b = 5.2745(14) Angstroms, c = 16.571(4) Angstroms, and beta = 121.576(4) degrees. The crystal data for 3 are as follows: rhombohedral, space group R, a = 22.2714(16) Angstroms, b = 22.2714(16) Angstroms, and c = 9.8838(11) Angstroms. Compound 1 adopts a three-dimensional pillared layered structure in which the inorganic layers made up of corner-sharing {NiO(5)N} octahedra and {CPO(3)} tetrahedra are connected by pyridyl groups. A two-dimensional layer structure is found in compound 2, which contains alternating inorganic double chains and pyridyl rings. Compound 3 has a one-dimensional chain structure where the Gd atoms are triply bridged by O-P-O linkages. The pyridyl nitrogen atom in 3 remains uncoordinated and is involved in the interchain hydrogen bonds. Magnetic susceptibility studies of 1 and 3 reveal that weak ferromagnetic interactions are mediated between Ni(II) centers in compound 1. For compound 3, the behavior is principally paramagnetic.  相似文献   

4.
Reaction of a 1,3-bis(ferrocenylchalcogeno)propane, FcE(CH2)3E'Fc (L: E, E' = Se or Te; Fc = [Fe(eta5-C5H5)(eta5-C5H4)]), with a palladium(II) or platinum(II) precursor [M(NCMe)4](PF6)2 (M = Pd or Pt) in acetonitrile at room temperature led in good yield to the bis-chelate complexes [ML2](PF6)2. The structures of FcSe(CH2)3SeFc and all six complexes have been determined by X-ray crystallography. Electrochemical studies showed that electronic communication between ferrocenyl groups, absent in all three bis(ferrocenylchalcogeno)propanes, is established on complexation only for E = Se and E' = Se or Te, when the through-bond Fe...Fe distance is reduced to 13.17 A or less.  相似文献   

5.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

6.
Cao DK  Li YZ  Zheng LM 《Inorganic chemistry》2005,44(9):2984-2985
Direct reaction of hydroxy(2-pyridyl)methylphosphonic acid with zinc sulfate under hydrothermal conditions results in the formation of the novel heptanuclear cluster compound [Zn7{(2-C5H4N)CH(OH)PO3}6 (H2O)6]SO4 x 4H2O (1). The inorganic core of the cluster can be described as a cylindrical drum made up of six Zn atoms bridged by six {CPO3} units that is centered by a seventh Zn atom. Crystal data: monoclinic, C2/c, a = 22.690(2) A, b = 16.675(2) A, c = 18.151(2) A, beta = 93.390(2) degrees.  相似文献   

7.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

8.
9.
Reaction of Fe(CO)2(NO)2 and [(ON)Fe(S,S-C6H3R)2]- (R = H (1), CH3 (1-Me))/[(ON)Fe(SO2,S-C6H4)(S,S-C6H4)]- (4) in THF afforded the diiron thiolate/sulfinate nitrosyl complexes [(ON)Fe(S,S-C6H3R)2 Fe(NO)2]- (R = H (2), CH3 (2-Me)) and [(ON)Fe(S,SO2-C6H4)(S,S-C6H4)Fe(NO)2]- (3), respectively. The average N-O bond lengths ([Fe(NO)2] unit) of 1.167(3) and 1.162(4) A in complexes 2 and 3 are consistent with the average N-O bond length of 1.165 A observed in the other structurally characterized dinitrosyl iron complexes with an {Fe(NO)2}9 core. The lower nu(15NO) value (1682 cm(-1) (KBr)) of the [(15NO)FeS4] fragment of [(15NO)Fe(S,S-C6H3CH3)2 Fe(NO)2]- (2-Me-15N), compared to that of [(15NO)Fe(S,S-C6H3CH3)2]- (1-Me-15N) (1727 cm(-1) (KBr)), implicates the electron transfer from {Fe(NO)2}10 Fe(CO)2(NO)2 to complex 1-Me/1 may occur in the process of formation of complex 2-Me/2. Then, the electronic structures of the [(NO)FeS4] and [S2Fe(NO)2] cores of complexes 2, 2-Me, and 3 were best assigned according to the Feltham-Enemark notation as the {Fe(NO)}7-{Fe(NO)2}9 coupling (antiferromagnetic interaction with a J value of -182 cm(-1) for complex 2) to account for the absence of paramagnetism (SQUID) and the EPR signal. On the basis of Fe-N(O) and N-O bond distances, the dinitrosyliron {L2Fe(NO)2} derivatives having an Fe-N(O) distance of approximately 1.670 A and a N-O distance of approximately 1.165 A are best assigned as {Fe(NO)2}9 electronic structures, whereas the Fe-N(O) distance of approximately 1.650 A and N-O distance of approximately 1.190 A probably imply an {Fe(NO)2}10 electronic structure.  相似文献   

10.
Unusual AuI-AgI heterometallic complexes [Au5Ag8(mu-dppm)4{1,2,3-C6(C6H4R-4)3}(CCC6H4R-4)7]3+ (R = H 1, CH3 2, But 3) were isolated by reactions of polymeric silver arylacetylides (AgCCC6H4R-4)n with binuclear gold component [Au2(mu-dppm)2(MeCN)2]2+ (dppm = bis(diphenylphosphino)methane), in which cyclotrimerization of arylacetylide -CCC6H4R-4 affords trianion {1,2,3-C6(C6H4R-4)3}3- with an unprecedented mu5-bonding mode. Compounds 1(SbF6)3-3(SbF6)3 exhibit intense photoluminescence derived from an MLCT (Au5Ag8 --> CCC6H4R-4) transition, mixed with a metal cluster-centered excited states.  相似文献   

11.
The reductive reactivity of lanthanide hydride ligands in the [(C5Me5)2LnH]x complexes (Ln = Sm, La, Y) was examined to see if these hydride ligands would react like the actinide hydrides in [(C5Me5)2AnH2]2 (An = U, Th) and [(C5Me5)2UH]2. Each lanthanide hydride complex reduces PhSSPh to make [(C5Me5)2Ln(mu-SPh)]2 in approximately 90% yield. [(C5Me5)2SmH]2 reduces phenazine and anthracene to make [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C12H8N2) and [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C10H14), respectively, but the analogous [(C5Me5)2LaH]x and [(C5Me5)2YH]2 reactions are more complicated. All three lanthanide hydrides reduce C8H8 to make (C5Me5)Ln(C8H8) and (C5Me5)3Ln, a reaction that constitutes another synthetic route to (C5Me5)3Ln complexes. In the reaction of [(C5Me5)2YH]2 with C8H8, two unusual byproducts are obtained. In benzene, a (C5Me5)Y[(eta(5)-C5Me4CH2-C5Me4CH2-eta(3))] complex forms in which two (C5Me5)(1-) rings are linked to make a new type of ansa-allyl-cyclopentadienyl dianion that binds as a pentahapto-trihapto chelate. In cyclohexane, a (C5Me5)2Y(mu-eta(8):eta(1)-C8H7)Y(C5Me5) complex forms in which a (C8H8)(2-) ring is metalated to form a bridging (C8H7)(3-) trianion.  相似文献   

12.
Electrochemical reduction of the dinuclear [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]2+ ions (M = Rh, Ir; L = 2,5-bis(1-phenyliminoethyl)pyrazine (bpip) and 2,5-bis[1-(2,6-dimethylphenyl)iminoethyl]pyrazine (bxip)) proceeds via the paramagnetic intermediates [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]+ (L = bpip) or [(eta 5-C5Me5)M(mu-L)MCl(eta 5-C5Me5)]2+ (L = bxip) and [(eta 5-C5Me5)M(mu-L)M(eta 5-C5Me5)]+. Whereas the first is clearly a radical species with a small g anisotropy, the chloride-free cations are distinguished by structured intervalence charge transfer (IVCT) bands in the near-infrared region and by rhombic electron paramagnetic resonance features between g = 1.9 and g = 2.3, which suggests considerable metal participation at the singly occupied MO. Alternatives for the d configuration assignment and for the role of the bisbidentate-conjugated bridging ligands will be discussed. The main difference between bpip and bxip systems is the destabilization of the chloride-containing forms through the bxip ligand for reasons of steric interference.  相似文献   

13.
The bidentate sandwich ligand [Fe(eta 5-C5H(4)-1-C5H4N)2] has been prepared, structurally characterized and employed in the preparation of the novel supramolecular heterobimetallic metalla-macrocycles [Fe(eta 5-C5H(4)-1-C5H4N)2]Ag2(NO3)(2).1.5H2O, [Fe(eta 5-C5H(4)-1-C5H4N)2]Cu2(CH3COO)(4).3H2O and [Fe(eta 5-C5H(4)-1-C5H4N)2]Zn2Cl4.  相似文献   

14.
A series of chiral dizinc complexes of the type [(2,6-{ArN=C(Me)C5H3N}2C6H3O)Zn2(micro-Cl)Cl2] [Ar=2,6-i-Pr2C6H3 (), 2,6-Me2C6H3 (), 2,4,6-Me3-C6H2 (), 2,4-Me2C6H3 ()] can be conveniently prepared in good yield by the template reaction of 2,6-{O=C(Me)C5H3N}2C6H3OH with an excess of the corresponding aniline and two equivalents of zinc dichloride in n-BuOH at elevated temperature. Alternatively, the pro-ligands, 2,6-{(ArN=C(Me)C5H3N}2C6H3OH [Ar=2,6-i-Pr2C6H3 (L1-H), 2,6-Me2C6H3 (L2-H), 2,4,6-Me3C6H2 (L3-H), 2,4-Me2C6H3 (L4-H)], can be isolated and then treated with two equivalents of zinc dichloride to afford . Interaction of with two equivalents of NaOAc in the presence of TlBF4 gives the diacetate-bridged salt [(L1)Zn2(micro-OAc)2](BF4) () while with Nadbm (dbm=dibenzoylmethanato) the bis(dbm)-chelated salt [(L1)Zn2(dbm)2](BF4) () is obtained. Hydrolysis occurs on reaction of with TlOEt to furnish [(L1)Zn2(micro-OH)Cl2] () as the only isolable product. Conversely, reaction of with Tlhp (hp=2-pyridonate) affords the neutral bis(pyridonate)-bridged trimetallic complex [(L1)Zn3(micro-hp)2Cl3] () as the major product along with as the minor one. Complex and mixtures of / act as modest activators for the ring-opening polymerisation of epsilon-caprolactone. Single crystal X-ray diffraction studies have been performed on , , , , and reveal Zn...Zn separations in the range: 3.069(4)-4.649(6) A.  相似文献   

15.
The reactions of elemental indium and In(I)Br with the carbonyl-free organonickel complexes (eta(5)-C(5)H(5))(PR(3))Ni-Br (R = CH(3), C(6)H(5)) have been studied in some detail. Either redox reactions to yield the ionic products [(eta(5)-C(5)H(5))(PR(3))(2)Ni][InBr(4)] (2a,b) occurred or the Ni-In bound systems (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)) (3a) and [(eta(5)-C(5)H(5))(PPh(3))Ni](2)InBr (4) were obtained in good yields. The new compounds were characterized by elemental analysis, NMR, and mass spectrometry. A short Ni-In bond of 244.65(9) pm was found for 3a. Single crystal data for (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)).THF (3a): triclinic, P1 with a = 1124.9(3), b = 1353.2(4), c = 1476.4(4) pm, alpha = 94.74(2) degrees, beta = 101.78(2) degrees, gamma = 109.64(1) degrees, V = 2044(1) x 10(6) pm(3), Z = 2, R = 0.053 (R(w) = 0.063).  相似文献   

16.
Coordination of N,N' bidentate ligands aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N 1 (Ar = 4-CH3-C6H4, 1a; 4-CH3O-C6H4, 1b; 2,6-(CH3)2-C6H3, 1c; 4-CF3-C6H4, 1d) to the moieties [Ru(bipy)2]2+, [Ru(eta5-C5H5)L]+ (L = CH3CN, CO), or [Ru(eta6-arene)Cl]2+ (arene = benzene, p-cymene) occurs under diastereoselective or diastereospecific conditions. Detailed stereochemical analysis of the new complexes is included. The coordination of these secondary amine ligands activates their oxidation to imines by molecular oxygen in a base-catalyzed reaction and hydrogen peroxide was detected as byproduct. The amine-to-imine oxidation was also observed under the experimental conditions of cyclic voltammetry measurements. Deprotonation of the coordinated amine ligands afforded isolatable amido complexes only for the ligand (1-methyl-1-pyridin-2-yl-ethyl)-p-tolyl-amine, 1e, which doesn't contain hydrogen atoms in a beta position relative to the N-H bond. The structures of [Ru(2,2'-bipyridine)2(1b)](PF6)2, 2b; [Ru(2,2'-bipyridine)(2)(1c)](PF6)2, 2c; trans-[RuCl2(COD)(1a)], 3; and [RuCl2(eta6-C6H6)(1a)]PF6, 4a, have been confirmed by X-ray diffraction studies.  相似文献   

17.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

18.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

19.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

20.
2-Aminomethylaniline was converted into the N,N'-bis(pivaloyl) (1) or -bis(trimethylsilyl) (2) derivative, using 2 Bu(t)C(O)Cl or 2 Me(3)SiCl (≡ RCl), respectively, with 2 NEt(3), or for 2 from successively using 2 LiBu(n) and 2 RCl. N,N'-Bis(neopentyl)-2-(aminomethyl)aniline (3) was prepared by LiAlH(4) reduction of 1. From 2 or 3 and 2 LiBu(n), the appropriate dilitiodiamide {2-[{N(Li)R}C(6)H(4){CH(2)N(Li)R}(L)](2) (L absent, 4a; or L = THF, 4b) or the N,N'-bis(neopentyl) analogue (5) of 4a was prepared. Treatment of 4a with 2 Bu(t)NC, 2 (2,6-Me(2)C(6)H(3)NC) or 2 Bu(t)CN (≡ L') furnished the corresponding adduct [2-N{Li(L')R}C(6)H(4){CH(2)N(Li)R}] (4c, 4d or 4e, respectively), whereas 4b with 2 PhCN afforded [2-{N(Li)R}C(6)H(4){CH(2)C(Ph) = NLi(NCPh)}] (6). The dimeric bis(amido)stannylene [Sn{N(R)C(6)H(4)(CH(2)NR)-1,2}](2) (7) was obtained from 4a and [Sn(μ-Cl)NR(2)](2), while the N,N'-bis(neopentyl) analogue 8 of 7 was similarly derived from [Sn(μ-Cl)NR(2)](2) and 5. Reaction of two equivalents of the diamine 2 with Pb(NR(2))(2) yielded 9, the lead homologue of 7. Oxidative addition of sulfur to 7 led to the dimeric bis(diamido)tin sulfide 10. Treatment of 2 successively with 'MgBu(2)' in C(5)H(12) and THF gave [Mg{N(R)C(6)H(4)(CH(2)NR)}(THF)](2) (11a), which by displacement of its THF by an equivalent portion of Bu(t)CN or PhCN produced [Mg{N(R)C(6)H(4)(CH(2)NR)}(CNR')(n)] [R' = Bu(t), n = 1 (11b); R' = Ph, n = 2 (11c)]. The Ca (12), Sr (13) or Ba (14) analogues of the Mg compound 11a were isolated from 2 and either the appropriate compound M(NR(2))(2) (M = Ca, Sr, Ba), or successively 2 LiBu(n) and 2 M(OTos)(2). The new compounds 1-14 were characterized by microanalysis (C, H, N; not for 1, 2, 3, 5), solution NMR spectra, ν(max) (C≡N) (IR for 4c, 4d, 4e, 6, 11b, 11c), selected EI-MS peaks (for 1, 2, 3, 7, 8, 9, 10), and single crystal X-ray diffraction (for 4a, 4b, 11a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号