首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Experimental excess molar enthalpies and densities have been measured for the ternary mixture x1MTBE+x21-propanol+(1-x1-x2)octane and the involved binary mixtures at 298.15 K and atmospheric pressure. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. A standard Calvet microcalorimeter was employed to determine the excess molar enthalpies. Densities were measured using a DMA 4500 Anton Paar densimeter. The UNIFAC group contribution model (in the versions of Larsen et al., and Gmehling et al.) has been used to estimate excess enthalpies values. Experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.  相似文献   

2.
Summary Experimental excess molar volumes for the ternary system x1MTBE+x21-propanol+(1-x1-x2) heptane and the three involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. The ternary mixture shows maximum values around the binary mixture MTBE+heptane and minimum values for the mixture MTBE+propanol. The ternary contribution to the excess molar volume is negative, with the exception of a range located around the rich compositions of 1-propanol. Several empirical equations predicting ternary mixture properties from experimental binary mixtures have been applied.  相似文献   

3.
Summary Experimental densities for the ternary mixture x1MTBE+x21-propanol+(1-x1-x2)decane and the binary mixtures xMTBE +(1-x)1-propanol and x1-propanol+(1-x)decane have been measured at 298.15 K and atmospheric pressure, using a DMA 4500 Anton Paar densimeter. Excess molar volumes were determined from the densities of the pure liquids and mixtures. Attending to the symmetry of the studied mixtures, suitable fitting equations have been used in order to correlate adequately the experimental data. For the ternary mixture, experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.  相似文献   

4.
Experimental excess molar volumes for the ternary system {x1MTBE+x21-propanol+(1–x1x2)nonane} and the three involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. The ternary mixture shows maximum values around the binary mixture MTBE+nonane and minimum values for the mixture MTBE+propanol. The ternary contribution to the excess molar volume is negative, with the exception of a range located around the rich compositions of 1-propanol. Several empirical equations predicting ternary mixture properties from experimental binary mixtures have been applied.  相似文献   

5.
Excess molar enthalpies for two ternary mixtures of {x 1 tributylphosphate (TBP) + x 2 water + x 3 methanol/ethanol} were measured at T = 298.15 K and atmospheric pressure using a TAM Air isothermal calorimeter, by mixing methanol or ethanol with binary mixtures of (water + TBP). Excess enthalpies for initial binary mixtures of (water + TBP) were also measured under the same conditions, which showed phase separation at low molar fraction of TBP. Experimental results of the ternary mixtures were expressed with constant excess molar enthalpy contours on Roozeboon diagrams.  相似文献   

6.
Summary Densities at 298.15 K and atmospheric pressure have been measured, using a DMA 4500 Anton Paar densimeter, for the ternary mixture methyl tert-butyl ether (MTBE)+1-pentanol+decane and for the involved binary mixtures MTBE+1-pentanol and 1-pentanol+decane. The excess molar volumes for the binary mixture MTBE+decane was reported in an earlier work [1]. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. Suitable fitting equations have been used in order to correlate adequately the excess molar volumes. The empirical expressions of Kohler [18], Jacob and Fitzner [19], Colinet [20], Knobeloch and Schwartz [21], Tsao and Smith [22], Toop [23], Scatchard et al. [24], Hillert [25], Mathieson and Thynne [26] were applied to estimate ternary properties from binary results.  相似文献   

7.
Excess molar enthalpies of the ternary system {x 1 p-xylene+x 2decane+(1–x 1x 2)diethyl carbonate} and the involved binary mixtures {p-xylene+(1–x)decane}, {xp-xylene+(1–x)diethyl carbonate} and {xdecane+(1–x)diethyl carbonate} have been determined at the temperature of 298.15 K and atmospheric pressure, over the whole composition range, using a Calvet microcalorimeter. The experimental excess molar enthalpies H m E are positive for all the binary systems studied over the whole composition range. Excess molar enthalpy for the ternary system is positive as well, showing maximum values at x 1=0, x 2=0.4920, x 3=0.5080, H m,123 E=1524 J mol–1.  相似文献   

8.
Densities at 298.15 K and atmospheric pressure have been measured, using a DMA 4500 Anton Paar densimeter, for the ternary mixture methyl tert-butyl ether (MTBE)+1-pentanol+nonane and for the involved binary mixture 1-pentanol+nonane. In addition, excess molar volumes were determined from the densities of the pure liquids and mixtures. Suitable fitting equations have been used in order to correlate adequately the excess molar volumes. Experimental data were also used to test several empirical expressions for estimating ternary properties from experimental binary results.  相似文献   

9.
Summary In this paper we present excess molar volumes and excess molar enthalpies of binary and ternary mixtures containing propyl propanoate, hexane and cyclohexane as components at 298.15 K. Excess molar volumes were calculated from the density of the pure liquids and mixtures. The density was measured using an Anton Paar DMA 60/602 vibrating-tube densimeter. Excess molar enthalpies were obtained using a Calvet microcalorimeter  相似文献   

10.
The solution enthalpies of n-hexane, n-nonane, and n-undecane in mixtures of MeCN with EtOH, PrOH, and BuOH were determined by calorimetric method at 298.15 K. Relations between the thermodynamic properties of ternary systems and the properties of the binary solvents and the solute are discussed. To predict the enthalpies of solution of hydrocarbons in mixed solvents whose components have strongly different molar volumes (V 2/V 1 > 1.5), it is proposed to use the values that are additive in the volume fraction scale. The solution enthalpies of hydrocarbons in mixtures characterized by close molar volumes of the components strongly depend on the excess properties of the binary solvent.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1578–1582, August, 2004.  相似文献   

11.
Excess enthalpies of sixteen binary mixtures between one each of methyl methylthiomethyl sulfoxide (MMTSO) and dimethyl sulfoxide (DMSO) and one of ketone {CH3CO(CH2)nCH3, n=0 to 6 and CH3COC6H5} have been determined at 298.15 K. All the mixtures showed positive excess enthalpies over the whole range of mole fractions. Excess enthalpies of ketone+MMTSO or DMSO increased with increasing the number of methylene radicals in the methyl alkyl ketone molecules. Excess enthalpies of MMTSO+ketone are smaller than those of DMSO+ketone for the same ketone mixtures. The limiting excess partial molar enthalpies of the ketone, H 1 E,∞, in all the mixtures with MMTSO were smaller than those of DMSO. Linear relationships were obtained between limiting excess partial molar enthalpies and the number of methylene groups except 2-propanone.  相似文献   

12.
Excess molar enthalpies, H E, for the binary mixtures {p-xylene+(1–x) octane}, {x p-xylene+(1–x) diethyl carbonate}, {x octane+(1–x) diethyl carbonate} and the corresponding ternary system {x 1 p-xylene+x 2 octane+(1–x 1x 2) diethyl carbonate} have been measured by using a Calvet microcalorimeter at 298.15 K under atmospheric pressure. The experimental H E values are all positive for the binary and ternary mixtures over the entire composition range.  相似文献   

13.
Excess molar enthalpies of the ternary mixture {x 1 tert-butyl methyl ether (MTBE)+x 2 ethanol+(1–x 1x 2) octane} and the involved binary mixture {x ethanol+(1–x) octane} have been measured at 298.15 K and atmospheric pressure, over the whole composition range, using a Calvet microcalorimeter. The results were fitted by means of different variable degree polynomials.  相似文献   

14.
Excess molar enthalpies of the ternary mixture {x1 tert-butyl methyl ether (MTBE)+x2 ethanol+(1–x1x2) hexane} and, the involved binary mixtures {x tert-butyl methyl ether (MTBE)+(1–x) ethanol}, {x tert-butyl methyl ether (MTBE)+(1–x) hexane} and {x ethanol+( 1–x) hexane} have been measured at 298.15 K and atmospheric pressure, over the whole composition range, using a Calvet microcalorimeter. The results were fitted by means of different variable degree polynomials.  相似文献   

15.
Excess molar enthalpies for the ternary system {x1 2-methoxy-2-methylpropane (MTBE) + x2 1-pentanol + (1  x1  x2) hexane} and the involved binary mixture {x 1-pentanol + (1  x) hexane}, have been measured at T = 298.15 K and atmospheric pressure over the whole composition range. We are not aware of the existence of previous experimental measurement of the excess enthalpy for the ternary mixture under study in the literature currently available. Values of the excess molar enthalpies were measured using a Calvet microcalorimeter. The results were fitted by means of different variable degree polynomials. The ternary contribution to the excess enthalpy was correlated with the equation due to Verdes et al. (2004), and the equation proposed by Myers–Scott (1963) was used to fit the experimental binary mixture measured in this work. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. The excess molar enthalpies for the binary and ternary system are positive over the whole range of composition. The binary mixture {x 1-pentanol + (1  x) hexane} is asymmetric, with its maximum displace toward a high mole fraction of decane. The ternary contribution is also positive with the exception of a range located around the rich compositions of 1-pentanol, and the representation is asymmetric.Additionally, the group contribution model of the UNIFAC model, in the versions of Larsen et al. (1987) [18] and Gmehling et al. (1993) [19] was used to estimate values of binary and ternary excess enthalpy. The experimental results were used to test the predictive capability of several empirical expressions for estimating ternary properties from binary results.  相似文献   

16.
Excess molar volumes, at the temperature 25°C and atmospheric pressure over the whole composition range, are reported for the following binary mixtures: methyl ethanoate + (n-octane, n-decane); methyl ethanoate + 1-chlorooctane; 1-chlorooctane + (n-heptane, n-octane, n-nonane, n-decane); and for the ternary mixtures methyl ethanoate + 1-chlorooctane + (n-heptane, n-octane, n-nonane, n-decane). The values of excess molar volumes were calculated from density and composition results. The excess volumes were utilized to test the multiproperty group-contribution model of Nitta et al. using parameter sets available in the literature. Experimental results from ternary mixtures have also been compared to predictions from several empirical and semiempirical models, which utilize, exclusively, results from binary mixtures.  相似文献   

17.
Density and viscosity of binary mixtures of (x13-amino-1-propanol + x2isobutanol) and (x13-amino-1-propanol + x22-propanol) were measured over the entire composition range and from temperatures (293.15 to 333.15) K at ambient pressure. The excess molar volumes and viscosity deviations were calculated and correlated by the Redlich–Kister (RK) equation. The thermal expansion coefficient and its excess value, isothermal coefficient of excess molar enthalpy, and excess partial molar volumes were determined by using the experimental values of density and are described as a function of composition and temperature. The excess molar volumes are negative over the entire mole fraction range for both mixtures and increase with increasing temperature. The excess molar volumes obtained were correlated by the Prigogine–Flory–Patterson (PFP) model. The viscosity deviations of the binary mixtures are negative over the entire composition range and decrease with increasing temperature.  相似文献   

18.
Measurements of excess molar enthalpies at 25°C in a flow microcalorimeter, are reported for the two ternary mixtures 2-methyltetrahydrofuran + 2, 2, 4-trimethylpentane + methylcyclohexane and 2-methyltetrahydrofuran + n-heptane + methylcyclohexane. Smooth representations of the results are described and used to construct constant-enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpies can be obtained from the Liebermann–Fried model using only the physical properties of the components and their binary mixtures.  相似文献   

19.
Densities of binary and ternary mixtures containing water + (1,2-ethanediol or 1,2-propanediol or 1,3-propanediol or 1,2-butanediol) + (1-n-butyl-3-methylimidazolium bromide at 0.01 mole fraction) at 298.15 K and atmospheric pressure have been determined as a function of composition using an Anton Paar densimeter (Model DMA 55). Excess molar volumes (VmEV_{\mathrm{m}}^{\mathrm{E}}) were calculated. The values are negative for all mixtures over the whole composition range.  相似文献   

20.
Excess molar volumes, VE, isentropic compressibility deviations, ΔκS, and excess molar enthalpies, HE, for the binary mixtures 2-methyl-tetrahydrofuran with 1-chlorobutane, 2-chlorobutane, 2-methyl-1-chloropropane and 2-methyl-2-chloropropane have been determined at temperatures 298.15 and 313.15 K, excess molar enthalpies were only measured at 298.15 K. We have applied the Prigogine-Flory-Patterson (PFP) theory to these mixtures at 298.15 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号