首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
An exact equation describing freely propagating stationary flames with arbitrary values of the gas expansion coefficient is obtained. This equation respects all conservation laws at the flame front, and provides a consistent nonperturbative account of the effect of vorticity produced by the curved flame on the front structure. It is verified that the new equation is in agreement with the approximate equations derived previously in the case of weak gas expansion.  相似文献   

2.
A time-dependent nonlinear equation for a nonstationary curved flame front of an arbitrary expansion coefficient is derived under the assumptions of a small but finite flame thickness and weak nonlinearity. On the basis of the derived equation, stability of two-dimensional curved stationary flames propagating in tubes with ideally adiabatic and slip walls is studied. The stability analysis shows that curved stationary flames become unstable for sufficiently wide tubes. The obtained stability limits are in a good agreement with the results of numerical simulations of flame dynamics and with semiqualitative stability analysis of curved stationary flames. Possible outcomes of the obtained instability at the nonlinear stage are discussed. The instability may result in extra wrinkles at a flame front close to the stability limits and in self-turbulization of the flame far from the limits. The self-turbulization can also be interpreted as a fractal structure. The fractal dimension of a flame front and velocity of a self-turbulized flame are evaluated.  相似文献   

3.
We consider an arbitrary Gaussian stationary process X(T) with known correlator C(T), sampled at discrete times Tn = nDeltaT. The probability that (n+1) consecutive values of X have the same sign decays as Pn approximately exp(-theta(D)Tn). We calculate the discrete persistence exponent theta(D) as a series expansion in the correlator C(DeltaT) up to fourteenth order, and extrapolate to DeltaT = 0 using constrained Padé approximants to obtain the continuum persistence exponent thetas. For the diffusion equation our results are in exceptionally good agreement with recent numerical estimates.  相似文献   

4.
Bloomfield PE 《Ultrasonics》2005,43(6):421-427
The pulse-echo impulse-response format in the Field II formalism is generalized to separately located transmitter and receiver. To first order in sound velocity and density perturbations, identical results for the scattering-object function are obtained for the Morse-Ingard and the Chernov formulation in both the temporal and frequency domains: f(s)=-[2Delta(c/c)+(Delta(rho/rho))(1-cos(theta))] where for ultrasonic pulse-echo or transmission modality, cos(theta) approximately -1 or +1, respectively.  相似文献   

5.
Diffusion in narrow curved channels with dead-ends as in extracellular space in the biological tissues, e.g., brain, tumors, muscles, etc. is a geometrically induced complex diffusion and is relevant to different kinds of biological, physical, and chemical systems. In this paper, we study the effects of geometry and confinement on the diffusion process in an elliptical comb-like structure and analyze its statistical properties. The ellipse domain whose boundary has the polar equation $\rho \left( \theta \right)=\frac{b}{\sqrt {1-e^{2}\cos^{2}\theta } }$ with $0相似文献   

6.

The dynamics of thin premixed flames is computationally studied within the context of a hydrodynamic theory. A level-set method is used to track down the flame, which is treated as a free-boundary interface. The flow field is described by the incompressible Navier–Stokes equations, with different densities for the burnt and unburnt gases, supplemented by singular source terms that properly account for thermal expansion effects. The numerical scheme has been tested on several benchmark problems and was shown to be stable and accurate. In particular, the propagation of a planar flame front and the dynamics of hydrodynamically unstable flames were successfully simulated. This includes recovering the planar front in narrow domains, the Darrieus–Landau linear growth rate for long waves of small amplitude, and the nonlinear development of cusp-like structures predicted by the Michelson–Sivashinsky equation for a small density change. The stationary flame of a Bunsen burner with uniform and parabolic outlet flows were also simulated, showing in particular a careful mapping of the flow field. Finally, the evolution of a hydrodynamically unstable flame was studied for finite amplitude disturbances and realistic values of thermal expansion. These results, which constitute one of the main objectives of this study, elucidate the effect of thermal expansion on flame dynamics.  相似文献   

7.
8.
The effect of inhomogeneous fluctuations in a reaction-diffusion system exhibiting a Hopf bifurcation is analyzed using the master equation approach. A Taylor expansion of the logarithm of the stationary probability, known as the stochastic potential, is calculated. This procedure displays marked analogies with the theory of normal forms. The critical potential, reduced to its local expansion around an arbitrary point of the limit cycle, brings out the essential role played by the phase of the oscillating variables. A comparison with the Langevin analysis of Walgraefet al. [J. Chem. Phys. 78(6):3043 (1983)] is performed.  相似文献   

9.
In this paper we study a variable coefficient Sine-Gordon (vSG) equation given by theta(tt)-theta(xx)+F(x,t)sin theta=0 where F(x,t) is a real function. To establish if it may be integrable we have performed the standard test of Weiss, Tabor, and Carnevale (WTC). We have got that the (vSG) equation has the Painleve' property (Pp) if the function F(x,t) satisfies a well-defined nonlinear partial differential equation. We have found the general solution of this last equation and, consequently, the functions F(x,t) such that the (vSG) equation possesses the (Pp), are given by F(x,t)=F(1)(x+t)F(2)(x-t) where F(1)(x+t) and F(2)(x-t) are arbitrary functions. Using this last result we have obtained some particular solutions of the vSG equation. (c) 1995 American Institute of Physics.  相似文献   

10.
An equation describing evolution of a curved deflagration front of finite thickness is obtained for the case of an arbitrary equation of state of the “fuel”, an arbitrary type of energy release and an arbitrary type of thermal conduction. The equation is complemented by conservation laws for the mass flux and the momentum flux through the deflagration front of finite thickness. As an illustration of the method, the growth rates and the cutoff wavelengths for the linear stage of the flame instability are calculated for the case of a flame in an ideal gaseous fuel and for the case of a thermonuclear deflagration propagating in a strongly degenerate matter of white dwarfs. Zh. éksp. Teor. Fiz. 111, 514–527 (February 1997) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

11.
We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain ${\Omega\subset\mathbb{R}^2}We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain W ì \mathbbR2{\Omega\subset\mathbb{R}^2} , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each N ? \mathbbN{N\in\mathbb{N}} . We also obtain new stream functions solving the sinh-Poisson equation -Dy = rsinhy{-\Delta\psi=\rho\sinh\psi} in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function yr{\psi_\rho} induces a stationary velocity field vr{v_\rho} solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field vr{v_\rho} that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation -Du=|u|p-1u{-\Delta u=|u|^{p-1}u} in Ω with p large.  相似文献   

12.
We study the nonlocal properties of states resulting from the mixture of an arbitrary entangled state rho of two d-dimensional systems and completely depolarized noise, with respective weights p and 1-p. We first construct a local model for the case in which rho is maximally entangled and p at or below a certain bound. We then extend the model to arbitrary rho. Our results provide bounds on the resistance to noise of the nonlocal correlations of entangled states. For projective measurements, the critical value of the noise parameter p for which the state becomes local is at least asymptotically log(d) larger than the critical value for separability.  相似文献   

13.
沈守枫 《物理学报》2006,55(3):1016-1022
研究(1+1)维广义的浅水波方程的变量分离解和孤子激发模式. 该方程包括两种完全可积(IST可积)的特殊情况,分别为AKNS方程和Hirota-Satsuma方程. 首先把基于Bcklund变换的变量分离(BT-VS)方法推广到该方程,得到了含有低维任意函数的变量分离解. 对于可积的情况,含有一个空间任意函数和一个时间任意函数,而对于不可积的情况,仅含有一个时间任意函数,其空间函数需要满足附加条件. 另外,对于得到的(1+1)维普适公式,选取合适的函数,构造了丰富的孤子激发模式,包括单孤子,正-反孤子,孤子膨胀,类呼吸子,类瞬子等等. 最后,对BT-VS方法作一些讨论. 关键词: 浅水波方程 Bcklund变换 变量分离 孤子  相似文献   

14.
Starting from a Langevin equation with stationary gaussian noise of arbitrary correlation time, a corresponding Fokker-Planck equation is derived under the condition of small noise strength.  相似文献   

15.
An extended subequation rational expansion method is presented and used to construct some exact analytical solutions of the (2+1)-dimensional cubic nonlinear Schrödinger equation. From our results, many known solutions of the (2+1)-dimensional cubic nonlinear Schrödinger equation can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. With computer simulation, the properties of new non-travelling wave and coefficient function's soliton-like solutions, and elliptic solutions are demonstrated by some plots.  相似文献   

16.
Flame–wall interaction (FWI) in premixed turbulent combustion has been analysed based on a counter-flow like configuration at the statistically stationary state. For the present configuration, the two FWI sub-zones, i.e the influence zone and the quenching zone, can be identified from the DNS results. Detailed analysis of the important quantities, such as the flame temperature, flame–wall distance, wall heat flux, flame curvature and dilatation (including the flame normal and tangential strain rates), and some orientation relations between the flame normal and the principal strain rate directions, have been reported, together with the physical explanations. All these statistical results are determined by the relative strengths of the wall heat flux, thermal expansion and the flame–turbulence interaction.  相似文献   

17.
Hydrodynamic instability is examined with consideration given to the viscosity of the fresh gas and combustion products, as well as to the dependences of the flame speed on the front curvature and of the transport coefficients on the temperature. For the perturbation frequency, an approximate second-order dispersion equation is derived. The flame is completely stable at very high viscosity or small dimensions. The greatest destabilizing role of the thermal expansion coefficient manifests itself at its relatively small values. As the expansion coefficient increases, the viscosity of the gas in the flame zone increases rapidly. In addition, the stabilizing effect according to the Markstein model is enhanced by thermal expansion.  相似文献   

18.
The equation for the fundamental field quantity ? is obtained. It is Div \(\rho ^\mu (\Omega _1 ) = \operatorname{h} \int {[\rho _\mu (\Omega _1 ),\rho ^\mu (\Omega _2 )]_ - \operatorname{d} \Omega _2 } \) ,where h is an arbitrary function oft andr, and [,]? is the commutator. The derivation requires the following hypotheses:(1) All of physical reality is completely described by the field ?.(2) Relativistic covariance of the equations governing ?.(3) Principle of continguous action.(4) Conservation of total amount of ?. The equation appears to be unique. It is suggested that the physical world corresponds to ? being a2×2 matrix. A close correspondence between the basic equation and Maxwell's equation is displayed. The electromagnetic vector potential Aμ is identified with ε ρμ dΩ. Conservation laws on various measures of ? are obtained. The symmetry groups of the basic equation are derived. A preliminary attempt to connect the field ? to the metric is made via Einstein's gravitational equation Gμυ =KTμυ.  相似文献   

19.
The velocity of a weakly turbulent flame influenced by the Darrieus–Landau (DL) instability in a three-dimensional geometry is investigated on the basis of a model nonlinear equation. The equation takes into account realistically large thermal expansion of burning matter, external turbulence and thermal conduction related to small, but finite flame thickness. An external turbulent flow is imitated by a model obeying the Kolmogorov law. The effects of the DL instability and external turbulence are studied, first separately and then as they influence the flame dynamics together for different values of the turbulent intensity, different thermal expansion of the burning matter and different length scales of the hydrodynamic motion controlled by the width of a hypothetic tube with ideally adiabatic walls. The velocity increase obtained is in a good agreement with experimental results in the case of relatively weak turbulent intensity.  相似文献   

20.
王振  秦玉鹏  邹丽 《中国物理 B》2017,26(5):50504-050504
We construct the Hirota bilinear form of the nonlocal Boussinesq(nlBq) equation with four arbitrary constants for the first time. It is special because one arbitrary constant appears with a bilinear operator together in a product form. A straightforward method is presented to construct quasiperiodic wave solutions of the nl Bq equation in terms of Riemann theta functions. Due to the specific dispersion relation of the nl Bq equation, relations among the characteristic parameters are nonlinear, then the linear method does not work for them. We adopt the perturbation method to solve the nonlinear relations among parameters in the form of series. In fact, the coefficients of the governing equations are also in series form.The quasiperiodic wave solutions and soliton solutions are given. The relations between the periodic wave solutions and the soliton solutions have also been established and the asymptotic behaviors of the quasiperiodic waves are analyzed by a limiting procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号