首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (perhalophenyl)tin derivatives [SnR4] (1-3) and [SnR3Cl] (4-6) (R = C6F5, C6F3Cl2, C6Cl5) were prepared from SnCl4 and LiR or [SnR4] in the appropriate molar ratio, while the dinuclear complexes [SnR3]2 (7-9) were obtained by treatment of [SnR3Cl] with potassium under toluene reflux. Complexes 2, 6·0.5toluene and 7 were structurally characterized, the latter displaying a Sn-Sn bond of 2.808(7) Å, which indicates a strong tin-tin bond with covalent character in solid state. The hexaaryldistannanes 7-9 undergo transmetallation reactions with gold(I) derivatives, such as [AuCl(PPh3)] or [(AuCl)2(μ-dppm)], affording the neutral species [AuR(PPh3)] (10-12) or [(AuR)2(μ-dppm)] (13-15) or the ionic product [Au3Cl2(μ-dppm)2][Sn(C6F5)3Cl2] (16). The crystal structures of 14·CH2Cl2, 15 and 16·2CH2Cl2 were determined by X-ray diffraction, the latter showing a Au3 nearly equilateral triangular core in the cation with gold-gold contacts of 3.128(7) and 3.227(12) Å. The main difference between the molecular structures of 14·CH2Cl2 and 15 (both of them displaying intramolecular gold-gold contacts of 3.142(6) and 3.160(4) Å, respectively) is the presence of an intermolecular Au?Au interaction of 3.2126(8) Å in the case of the C6F3Cl2 complex that gives rise to a tetranuclear unit.  相似文献   

2.
Treatment of R2Si(CC-SiMe3)2 [1a (Me), 1b (Ph)] with HB(C6F5)2 at low temperature (253 K (a), 273 K (b)) gives the -B(C6F5)2 substituted silacyclobutene products (4a,b) under kinetic control. Upon warming to room temperature they disappear to form the thermodynamically favoured isomeric silole derivatives (2a,b). Similar treatment of Me2Si(CC-R1)2 [5a (R1 = Ph), 5b (R1 = tert-butyl) with HB(C6F5)2 at room temperature gave the stable -B(C6F5)2 substituted silacyclobutene derivatives 6 and 7, respectively. Subsequent photolysis resulted in a Z- to E-isomerization of the substituted exocyclic CC double bonds in these products. The silacyclobutene derivative E-6 was characterized by an X-ray crystal structure analysis.  相似文献   

3.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

4.
The first α- and β-chiral water-soluble trialkylmonophosphines, 1 and 2, respectively, both with C3 symmetry, were synthesised from sodium phosphide and chiral mesylates, accessible from (S)-ethyl lactate. X-ray structures of a corresponding 2:1 gold(I) complex [12Au(I)]OTf and of a borane complex 2·BH3 were determined.  相似文献   

5.
Reaction of [(dppf)Au2Br2] (3) {dppf = 1,1′-bis(diphenylphosphino)ferrocene} and [(dippf)Au2Br2] (4) {dippf = 1,1′-bis(diisopropylphosphino)ferrocene} with excess bromine yields two new complexes [(C5H4Br3)(PR2)AuBr] (R = Ph, 5; R = i-Pr, 6). Bromination of the free diphosphinoferrocene ligands produces the expected brominated cyclopentenes (C5H4Br3)(PR2) (R = Ph, 7; R = i-Pr, 8) in good yields; however, these compounds could not be complexed to gold due to reduced basicity of 7 and 8. When the bromination is performed under wet aerobic conditions the oxidized pseudo-centrosymmetric product, [doppf][FeBr4] (9) {doppf = 1,1′-bis(oxodiphenylphosphino)ferrocene, is formed as the major product. Solid-state structures of 1, 2, 4, 6, and 9 have been established by means of single-crystal X-ray crystallography.  相似文献   

6.
Eight diorganotin esters of salicylidene-L-tryptophan(Sal-T) and salicylidene-L-valine(Sal-V), [(n-Bu)2Sn(Sal-T)] (1), [(n-Bu)2Sn(Sal-V)] (2), [Ph2Sn(Sal-T)] (3), [Ph2Sn(Sal-V)] (4), [(PhCH2)2Sn(Sal-T)] (5), [(PhCH2)2Sn(Sal-V)] (6), [(4-ClC6H4CH2)2Sn(Sal-T)] (7) and [(4-ClC6H4CH2)2Sn(Sal-V)] (8) have been synthesized and characterized by elemental analysis, IR and 1H NMR. The crystal structures of compounds 1 and 2 have been determined by X-ray single crystal diffraction. Their structures show the tin atoms of two compounds are rendered five-coordinated in distorted trigonal bipyramidal geometries.  相似文献   

7.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

8.
The perfluoroaryl tellurolates C6F5TeLi (1) and 4-CF3C6F4TeLi (2) were prepared. These intermediates were identified by NMR spectroscopy and may form, depending on the reaction conditions, either the corresponding ditellanes C6F5TeTeC6F5 (3) and CF3C6F4TeTeC6F4CF3 (4) by subsequent oxidation, or in the case of 1, a telluranthrene (C6F4Te)2 (5) by reaction with itself. The halogenation products of 5, ( C6F4Te)2F4 (6), (C6F4Te)2Cl4 (7), (C6F4Te)2Br4 (8), as well as the azidation product (C6F4Te)2(N3)4 (9) were synthesized. Furthermore, in pursuit of our recent work on tellurium azides, the syntheses and properties of R2Te(N3)2 (R=CF3 (10), C6F2H3 (11)) and RTe(N3)3 (R=CF3 (12) and C6F5 (13)) are reported. The crystal structures of CF3C6F4TeTeC6F4CF3 (4), (C6F4Te)2Br4 (8), and (C6F2H3)2Te(N3)2 (11) were determined.  相似文献   

9.
Indium bis(phenolato) complexes [{In(CH3)2(THF)}2(L)] (L = 1,4-dithiabutanediylbis(4,6-di-tert-butylphenolato) (etbbp), 2) and [In(cytp)(CH3)]2 (L = (1,2-cyclohexanediyldithio)-2,2′-diphenolato (rac-cytp), 3) were prepared from [In(CH3)3] and the tetradentate 1,2-dithiaalkanediyl-bridged bis(phenol) LH2. The nature of the ligand bridging two indium centers was shown by X-ray diffraction studies of the complex [{In(CH3)2(THF)}2(etbbp)] (2) that was synthesized from complex [In(etbbp)(CH3)(THF)n] (1) by reaction with a second equivalent of [In(CH3)3]. A related ligand without bulky substituents on the aromatic rings leads to the dimeric compound [In(cytp)(CH3)]2 (3) with distorted octahedral configuration in the solid state. It was converted into the cation [In(cytp)]+ by methyl abstraction with [B(C6F5)3].  相似文献   

10.
The novel tridentate chiral ligand 2,6-bis{[(1R,2S,4R)-2-hydroxy-1,3,3-trimethyl-bicyclo[2.2.1]hept-2-yl]}pyridine (1) was readily prepared by reaction of 2,6-dilithiopyridine with (R)-(−)-fenchone. Reaction of 1 with [MoO2(acac)2] resulted in the formation of the new metal-oxo five-coordinated complex [MoO2(ONO)] (2) [ONO = (1 – 2H)]. The reactivity of 2 has been studied and the derivatives [MoS2(ONO)] (3) and [MoO(O2)(ONO)] (4) were prepared. The compounds 14 have been characterised by 1H and 13C{1H} NMR, microanalysis and IR spectroscopy. Furthermore, the molecular structures of 1 and 2 have been determined by single-crystal X-ray diffraction. The behaviour of 2 as catalyst in oxotransfer and in nucleophilic substitution of propargylic alcohols reactions has been tested.  相似文献   

11.
The reaction of [PtX2(L)] (X = Cl, Br, I; L = NH2CH2CH2NY2; Y = Et, Me) with thallium(I) carbonate and a polyfluorobenzene (RF) in pyridine (py) yields the platinum(II) complexes, [Pt{N(R)CH2CH2NY2}X(py)] (R = C6F5, 4-HC6F4, 4-BrC6F4, or 4-IC6F4, Y = Et (1), Me (2), X = Cl, Br or I) in an improved synthesis. From the reaction of [PtCl2(H2NCH2)2)] with Tl2CO3 and 1,2,3,4-tetrafluorobenzene or 2-bromo-1,3,4,5-tetrafluorobenzene in py, the new complexes [Pt(NRCH2)2(py)2] (3) (R = C6H2F3-2,3,6 and C6HBrF3-2,3,5,6) have been isolated but the latter preparation also gave product(s) with a 4-bromo-2,3,5-trifluorophenyl group. From an analogous preparation in 4-ethylpyridine (etpy), [Pt(N(4-HC6F4)CH2)2(etpy)2] (4) was obtained. The X-ray crystal structures of (3) (R = C6HBrF3-2,3,5,6) and (4) were determined as well as that of the previously prepared (3) (R = 4-BrC6F4) and a more precise structure of (3) (R = 4-HC6F4) has been obtained.  相似文献   

12.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

13.
Coordination chemistry of a pyridine imidazole-2-ylidene ligand (pyN ˆC) with sterically hindered substituents toward palladium(II) metal ions has been investigated. The palladium carbene complex [(C-pyN ˆC)Pd(η3-allyl)Cl] (3) is prepared via the transmetallation from the corresponding silver carbene complexes with [ClPd(η3-allyl)]2. Upon the abstraction of chloride, coordination of pyridinyl-nitrogen becomes feasible to form [C,N-(pyN ˆC)Pd(η3-allyl)](BF4) (4). Ligand substitution reaction of 4 with triphenylphosphine results in the formation of [(C-pyN ˆC)Pd(PPh3)(η3-allyl)](BF4)], which the pyridinyl-nitrogen donor is substituted by the phosphine. This palladium complex appears to be base sensitive. Treatment of 4 with t-butoxide causes the decomposition to yield the metal nano-particles. Furthermore, de-complexation of 4 takes place under hydrogen atmosphere to generate the carbene precursor, 1-(6-mesityl-2-picolyl)-3-mesitylimidazolium salt. Nevertheless, the palladium complex 4 shows good catalytic activity on the Suzuki-Miyaura and Mizoroki-Heck reactions.  相似文献   

14.
The interaction of silver triflate (OTf=SO3(CF3)) and dppf [(C5H4PPh2)2Fe)] gave different complexes, depending on the stoichiometric proportions and reaction conditions. Under limiting dppf conditions, three different forms (1-3) of [Ag2(OTf)2(dppf)]x were isolated. Single crystal X-ray diffraction analyses showed that the structure of 1 (x=2n) consists of a 2-D polymer comprising a tetra-silver basic unit, while that of 2 (x=2) possesses a discrete tetra-silver framework and that of 3 (x=n) is a linear polymer based on a di-silver repeating unit. The structures are supported by bridging dppf ligands and triflate groups. The crystal lattices of the compounds are stabilized by extensive intermolecular C-H?X hydrogen bonding (H=ring proton of Cp or Ph of dppf; X=O or F of OTf). [Ag(dppf)(OTf)] (4) and the structurally characterized mononuclear [Ag(dppf)2](OTf) (5) were the sole products obtained from treatment of AgOTf with dppf in molar ratios of 1:1 and 1:2, respectively.  相似文献   

15.
This work presents cyclic voltammetry and double potential step chronoamperometry experiments corresponding to the electrochemical reduction of the substituted 1,10-phenanthroline ligands in the coordination compounds [Ru(pdto)(1,10-phenanthroline)]Cl2 (1), [Ru(pdto)(5,6-dimethyl-1,10-phenanthroline)]Cl2 (2), [Ru(pdto)(4,7-diphenyl-1,10-phenanthroline)]Cl2 (3), [Ru(pdto)(4,7-dimethyl-1,10-phenanthroline)]Cl2 (4) and [Ru(pdto)(3,4,7,8-tetramethyl-1,10-phenanthroline)]Cl2 (5). These studies were performed in order to evaluate the stability of the electrogenerated chemical species. An ECi mechanism for all the complexes was proposed and the rate constant value (k1) for the chemical coupled reaction was estimated. The stability is discussed in terms of the rate constant value (k1) and the π*-acceptor properties.  相似文献   

16.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

17.
The first gold(I) trithiophosphite complexes were synthesised and fully characterised. Reaction of (tht)AuX (X = Cl, C6F5; tht = tetrahydrothiophene) with trithiophosphites (RS)3P (R = Me, Ph) and the bicyclic [(SCH2CH2S)PSCH2]2 (2L) afforded the corresponding molecular complexes (RS)3PAuX [R = Me, X = Cl (1); R = Me, X = C6F5 (2); R = Ph, X = Cl (3); R = Ph, X = C6F5 (4)], and 2L(AuX)2 [X = Cl (5), X = C6F5 (6)]. Reacting (tht)AuCl consecutively with two mole equivalents of (MeS)3P and then AgOTf, gave the ionic compound {[(MeS)3P]2Au}OTf (7). The compounds were characterised by multinuclear NMR spectroscopy, IR measurements and mass spectrometry, and the crystal and molecular structures of 1, 3, 6, two polymorphs of 2 as well as the known (MeO)3PAuCl (8) were determined by X-ray diffraction. The halide complexes 1 and 8 are isostructural and exhibit infinite chains of “crossed-sword”-type aurophilic interactions with Au?Au contact distances of 3.2942(3) and 3.1635(4) Å, respectively. Complex 6 exhibits a long Au?Au contact of 3.4671(9) Å. Au?S interactions between 3.3455(7) and 3.520(2) Å are present in the structures of 1 and one polymorph of 2.  相似文献   

18.
The chelate 1,2-bis(imine)nickel(butadiene) complex 4a (chelate ligand derived from condensation of biacetyl with 2,6-diisopropylaniline) adds the strong Lewis acid B(C6F5)3 at the terminal carbon atom of the butadiene ligand to yield the dipolar substituted π-allyl-type betaine complex (lig)Ni[η3-C3H4-CH2B(C6F5)3] (Z-6a). At 90 °C the kinetically formed product equilibrated with its E-6a isomer. Similarly, 4a adds the boron Lewis acid (pyrrolyl)B(C6F5)2 to yield the corresponding neutral dipolar π-allyl betaine complex Z-7a, that slowly equilibrated with E-7a over several hours at ambient temperature. Protonation of the butadiene ligand of complex 4a was achieved by treatment with the neutral Brønsted acid (2H-pyrrol)B(C6F5)3 to yield the [(lig)Ni(η3-crotyl)+][(pyrrolyl)B(C6F5)3] salt 9a (Z-/E-9a ratio=90:10 upon preparation). At 298 K this salt rearranged to a 5:95 mixture of Z-9a/E-9a with a Gibbs activation energy of ΔG (298 K)=22.3±0.2 kcal mol−1. Complex 4a added [Ph3C+] to the butadiene ligand to yield the salt [(lig)Ni(η3-C3H4-CH2CPh3)+][B(C6F5)4] (Z-12a), that proved isomerically stable under the applied reaction conditions. Similar reactions were carried out starting from the acenaphthylene 1,2-dione derived chelate bis(imine)Ni(butadiene) complex 4b. The systems 6, 7, 9 and 12 were found to be active ethene polymerization catalysts in the presence of Al(i-Bu)3.  相似文献   

19.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

20.
The reactions of [In(NEt2)3]2 and Sb(NEt2)3 with an equimolar amount of decafluorodiphenylamine (DFDPA, LH) lead to the indium or antimony amides [(C6F5)2NIn(NEt2)2]2 (1) and (C6F5)2NSb(NEt2)2 (2). Compound 2 rearranged further to give monofluoride Et2NSb(F)[N(o-Et2N-C6F4)(C6F5)] (3) and then difluoride F2Sb[N(o-Et2N-C6F4)2] (4). The hydrolysis of 4 gave free ligand HN(o-Et2N-C6F4)2 (5). Closely related HN(o-Me2N-C6F4)2 (6) was prepared from the reaction of Bi(NMe2)3 with DFDPA. The reactions of LiN(C6F5)2·THF with metal halides gave Sb[N(C6F5)2]3 (7), Me3Sb(Br)[N(C6F5)2] (8), Me3Sb(Cl)[N(C6F5)2] (9), Me3Sb[N(C6F5)2]2 (10), [Li(THF)2][In{N(C6F5)2}3Cl] (11). The X-ray structural investigations of 2 and 8 are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号