首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

2.
The compounds Ru3(CO)9(SnPh3)2(NCMe)(μ-H)2 (1), Ru3(CO)10(SnPh3)2(μ-H)2 (2), Ru(CO)4(SnPh3)2 (3) and Ru(CO)4(SnPh3)(H) (4) were obtained from the reaction of Ru3(CO)10(NCMe)2 with HSnPh3 in hexane solvent. Compounds 1, 3 and the new compound Ru3(CO)7(SnPh3)3(NCMe)2(μ-H)3 (5) were obtained from reaction of Ru3(CO)10(NCMe)2 with HSnPh3 in a CH2Cl2 and MeCN solvent mixture. Compound 2 and the new compound Ru3(CO)9(SnPh3)3(μ-H)3 (6) were obtained from reactions of 1 and 5 with CO, respectively. Compounds 2 and 6 eliminated benzene when heated to yield Ru3(CO)10(μ-SnPh2)2 (7) and Ru3(CO)9(μ-SnPh2)3 (8) which contain bridging SnPh2 ligands. Compound 7 was found to react with to yield the adduct, (9) in 59% yield by the addition of groups to two of the Ru-Sn bonds to the bridging SnPh2 ligands. Fenske-Hall molecular orbital calculations were performed to provide an understanding of the metal-metal bonding in the clusters of 7 and 9. Compounds 1, 2, 5, 6, 7 and 9 were characterized structurally by single crystal X-ray diffraction analysis.  相似文献   

3.
The reaction of [Ru3(CO)12] (1), with indene in refluxing xylene affords [{(η5-C9H7)Ru(CO)2}2] (2), in high yield. An analogous reaction of 1 with 2-phenylindene affords the expected dinuclear complex [{(η5-C9H6Ph)Ru(CO)2}2] (5), and a heptaruthenium cluster [(C9H4Ph)Ru7(μ-H)(μ-CO)2(CO)16] (6). The indenyl ligand in compound 6 exhibits a novel bonding mode in which the benzenoid ring is μ41122 bound to the cluster. Refluxing 1 with bis-indenyl methane affords the dinuclear complex [Ru2(CO)4{μ-(η5-C9H6)2CH2}] (7), which reacts with iodine via Ru-Ru bond cleavage to give [Ru2I2(CO)4{(η5-C9H6)2CH2}] (8).  相似文献   

4.
The ruthenium-tin complex, [Ru2(CO)4(SnPh3)2(μ-pyS)2] (1), the main product of the oxidative-addition of pySSnPh3 to Ru3(CO)12 in refluxing benzene, is [Ru(CO)2(pyS)(SnPh3)] synthon. It reacts with PPh3 to give [Ru(CO)2(SnPh3)(PPh3)(κ2-pyS)] (2) and further with Ru3(CO)12 or [Os3(CO)10(NCMe)2] to afford the butterfly clusters [MRu3(CO)12(SnPh3)(μ3-pyS)] (3, M=Ru; 4, M=Os). Direct addition of pySSnPh3 to [Os3(CO)10(NCMe)2] at 70 °C gives [Os3(CO)9(SnPh3)(μ3-pyS)] (5) as the only bimetallic compound, while with unsaturated [Os3(CO)83-PPh2CH2P(Ph)C6H4}(μ-H)] the previously reported [Os3(CO)8(μ-pyS)(μ-H)(μ-dppm)] (6) and the new bimetallic cluster [Os3(CO)7(SnPh3){μ-Ph2PCH2P(Ph)C6H4}(μ-pyS)[(μ-H)] (7) are formed at 110 °C. Compounds 1, 2, 4, 5 and 7 have been characterized by X-ray diffraction studies.  相似文献   

5.
Reaction of Ph2PCC(CH2)5CCPh2 with Os3(CO)10(NCMe)2 affords Os3(CO)10(μ,η2-(Ph2P)2C9H10) (1) and the double cluster [Os3(CO)10]2(μ,η2- (Ph2P)2C9H10)2 (2), through coordination of the phosphine groups. Thermolysis of 1 in toluene generates Os3(CO)7(μ-PPh2)(μ35-Ph2PC9H10) (3) and Os3(CO)8(μ-PPh2)(μ36-Ph2P(C9H10)CO) (4). The molecular structures of 1, 3, and 4 have been determined by an X-ray diffraction study. Both 3 and 4 contain a bridging phosphido group and a carbocycle connected to an osmacyclopentadienyl ring, which are apparently derived from C-P bond activation and C-C bond rearrangement of the dpndy ligand governed by the triosmium clusters.  相似文献   

6.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

7.
The clusters [Ru4(μ-CO)(CO)1041212-C5H6)2] (1), [Ru4(CO)8441113-C10H12)(μ3321-C5H6)] (2) and [Ru4(CO)10441131-C15H16)] (3) have been prepared from the reaction of [H4Ru4(CO)12] with 1-penten-3-yne. This reaction is observed to proceed with dimerization and trimerization through the triple bonds. The products were characterized spectroscopically by 1H- and 13C-NMR. X-ray crystal structures of compounds 1 and 2 are also described.  相似文献   

8.
The reaction of the methylidyne-bridged cluster HRu3(CO)10(μ-COMe) (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and Me3NO furnishes HRu3(CO)8(μ-COMe)(bpcd) (2) and HRu3(CO)8(Ph2PH)[μ-PPh2CCC(O)CH2C(O)] (3) as the major and minor products, respectively. The 1H and 31P NMR data indicate that the bpcd ligand in 2 is chelated to one of the ruthenium atoms that is bridged by the hydride and methylidyne ligands. Thermolysis of 2 is accompanied by P-Ph bond cleavage and elimination of benzene to yield Ru3(CO)73-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (4). Compound 4 consists of a triangular ruthenium core that is face-capped by μ3-COMe methylidyne and μ-P(Ph)CC(PPh2)C(O)CH2C(O) phosphido ligands. The kinetics for the conversion of 2 → 4 have been measured in toluene solvent over the temperature range 320-343 K, and based on the observed activation parameters and the inhibitory effect of added CO on the reaction, a rate-limiting step involving a dissociative loss of CO is supported. Heating 4 in the presence of H2 afforded the phosphinidene-capped cluster H3Ru3(CO)73-PPh)[μ-CC(PPh2)C(O)CH2C(O)] (5). Crystallographic analysis of 5 has confirmed the loss of the methylidyne moiety and the cleavage of the phosphido PhP-C(dione) bond, and the presence of three edge-bridging hydrides is supported by 1H NMR spectroscopy. The reaction of 4 with added PPh3 and PMe3 has been investigated; the uptake of a single phosphine ligand occurs regiospecifically at one of the phosphido-bound ruthenium centers to give Ru3(CO)6L(μ3-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (PPh3, 6; PMe3, 7). Compound 6 contains 48e- and exhibits a structural motif similar to that found in 4. Compound 7 readily adds a second PMe3 ligand to yield the bis-substituted cluster Ru3(CO)6(PMe3)22-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (8). The solid-state structure of 8 confirms the loss of two ruthenium-ruthenium bonds and the conversion of the original face-capping μ3-COMe ligand to a μ2-COMe moiety that tethers two non-bonding ruthenium centers. The two PMe3 ligands in 8 coordinate to the same ruthenium center, and the 9e- P(Ph)CC(PPh2)C(O)CH2C(O) ligand binds all three ruthenium atoms through the phosphine, phosphido, alkene, and carbonyl moieties. Near-UV irradiation of 8 leads to loss of CO and polyhedral contraction of the triruthenium frame to yield the 48e- cluster Ru3(CO)5(PMe3)23-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (9).  相似文献   

9.
The reaction of the formyl-capped cluster HC(O)CCo3(CO)9 (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the presence of added Me3NO leads to the production of the disubstituted cluster HC(O)CCo3(CO)7(bpcd) (2). Thermolysis of 2 in toluene at 60 °C gives the methylidyne-capped cluster HCCo3(CO)7(bpcd) (4) and the phosphido-bridged cluster Co3(CO)7221-P(Ph)CC(PPh2)C(O)CH2C(O)] (5). Cluster 4 has been independently prepared from HCCo3(CO)9 and bpcd and shown to serve as the precursor to 5. The new clusters 2, 4, and 5 have been isolated and characterized in solution by IR and NMR (1H and 31P) spectroscopies and their solid-state structures have been established by X-ray diffraction analyses. Both clusters 2 and 4 contain 48e- and exhibit triangular Co3 cores with a chelating and bridging bpcd ligand in the solid state, respectively. The structure of 5 provides unequivocal support for the loss of the methylidyne capping ligand and P-Ph bond cleavage attendant in the activation of 4 and confirms the presence of the face capping seven-electron μ221-P(Ph)CC(PPh2)C(O)CH2C(O) ligand in the final product. The fluxionality displayed by the bpcd ligand in clusters 2 and 4 and the decarbonylation behavior of the formyl moiety in the former cluster are discussed relative to related alkylidyne-capped Co3 derivatives.  相似文献   

10.
Treatment of [Ru3(CO)10(μ-dppm)] (4) [dppm = bis(diphenylphosphido)methane] with tetramethylthiourea at 66 °C gave the previously reported dihydrido triruthenium cluster [Ru3(μ-H)23-S)(CO)7(μ-dppm)] (5) and the new compounds [Ru33-S)2(CO)7(μ-dppm)] (6), [Ru33-S)(CO)73-CO)(μ-dppm)] (7) and [Ru33-S){η1-C(NMe2)2}(CO)63-CO)(μ-dppm)] (8) in 6%, 10%, 32% and 9% yields, respectively. Treatment of 4 with thiourea at the same temperature gave 5 and 7 in 30% and 10% yields, respectively. Compound 7 reacts further with tetramethylthiourea at 66 °C to yield 6 (30%) and a new compound [Ru33-S)21-C(NMe2)2}(CO)6(μ-dppm)] (9) (8%). Thermolysis of 8 in refluxing THF yields 7 in 55% yield. The reaction of 4 with selenium at 66 °C yields the new compounds [Ru33-Se)(CO)73-CO)(μ-dppm)] (10) and [Ru33-Se)(μ33-PhPCH2PPh(C6H4)}(CO)6(μ-CO)] (11) and the known compounds [Ru3(μ-H)23-Se)(CO)7(μ-dppm)] (12) and [Ru43-Se)4(CO)10(μ-dppm)] (13) in 29%, 5%, 2% and 5% yields, respectively. Treatment of 10 with tetramethylthiourea at 66 °C gives the mixed sulfur-selenium compounds [Ru33-S)(μ3-Se)(CO)7(μ-dppm)] (14) and [Ru33-S)(μ3-Se){η1-C(NMe2)2}(CO)6(μ-dppm)] (15) in 38% and 10% yields, respectively. The single-crystal XRD structures of 6, 7, 8, 10, 14 and 15 are reported.  相似文献   

11.
Reaction of 1,3,5-trimethyl-1,3,5-triazacyclohexane [(MeNCH2)3] with Os3(CO)12 in refluxing toluene results in C-H and C-N bond activation of the (MeNCH2)3 ligand to afford three amidino cluster complexes (μ-H)Os3(CO)10[μ,η2-CH(NMe)2] (1), (μ-H)Os3(CO)932-CH(NMe)2] (2), and Os2(CO)6[μ,η2-CH(NMe)2]2 (3). The controlled experiments show that thermolysis of 1 yields 2, and heating 2 in the presence of (MeNCH2)3 ligand produces 3. The molecular structures of 1 and 3 have been determined by an X-ray diffraction study.  相似文献   

12.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

13.
Bis(dimethylphosphino)naphthalene, 1,8-(PMe2)2C10H6 (dmpn), reacts readily with Ru3(CO)12 or Ru3(μ-dppm)(CO)10 with replacement of one of the PMe2 groups by H to give Ru3(CO)12 − n{PMe2(nap)}n (n = 1 2, 2 3) or Ru3(μ-dppm)(CO)9{PMe2(nap)} 4; the complex Ru3(CO)10(dmpn) 1 is obtained only in small amount. Thermolysis of 2 or 4 gives Ru3(μ-H)23-PMe2(C10H5)}(μ-dppm)n (CO)8-2n (n = 0 5, 1 6, respectively) containing μ3-naphthalyne groups.  相似文献   

14.
The pyrolysis reaction of [Ru3(CO)10(dppe)], compound 1, in toluene yields as the main product [Ru4(CO)9(μ-CO){μ42-PCH2CH2P(C6H5)2}(μ44-C6H4)], compound 2. The X-ray structure of 2 shows a benzyne group coordinated to a square of ruthenium atoms and a μ42-PCH2CH2PPh2 fragment. Variable-temperature NMR experiments showed three independent dynamic processes: a rotation of the benzyne group, CO migration and a twisting movement of the CH2CH2 fragment. The thermolysis of [Ru3(CO)10(dfppe)], compound 3, (dfppe=1,2-bis(dipentafluorophenylphosphino)ethane, carried out under the same conditions, showed 3 to be stable.  相似文献   

15.
Reactions of Os3(CO)12 with 1,8-bis(diphenylphosphino)naphthalene (dppn) are described. Crystallographically characterised complexes isolated from a reaction carried out in refluxing toluene are Os3(μ-H)2{μ-PPh2(nap)PPh(C6H4)}2(CO)6 (1), Os3(μ-H){μ3-PPh2(nap)PPh(C6H4)}(CO)8 (2) and Os2(μ-PPh2){μ-PPh2(nap)}(CO)5 (3) (nap=1,8-C10H6), while at r.t. in the presence of ONMe3, only Os3(CO)11{PPh2(1-C10H7)} (4) was isolated. While 1 and 2 contain ligands formed by metallation of a Ph group of dppn, as found also in complexes obtained from dppn and Ru3(CO)12, ligands in 3 and 4 are formed by cleavage of a P-nap bond, not found in the Ru series.  相似文献   

16.
The photochemistry of five diruthenium hexacarbonyl tetrahedrane compounds, Ru2(CO)6(μ-S2C6H4) (1), Ru2(CO)6(μ-S2C2H4) (2), Ru2(CO)6(μ-S2C3H6) (3), Ru2(CO)6(μ-SCH2CH3)2 (4), and Ru2(CO)6(μ-dmpz)2, (5), where dmpz=3,5-dimethylpyrazolate, have been examined in frozen Nujol glasses at ca. 90 K. Compounds 1-4 are found to lose CO upon UV photolysis to form two isomeric photoproducts, while 5 is found to form one product almost exclusively. The various photoproducts are assigned to axial and equatorial CO-loss species on the basis of the spectra of analogous triphenylphosphine pentacarbonyl derivatives.  相似文献   

17.
Thermal reaction of [Ru3(CO)12] with PH2Mes (Mes = mesityl) in refluxing toluene afforded mesitylphosphinidene-capped ruthenium carbonyl clusters, [Ru3(CO)9(μ-H)23-PMes)] (1), [Ru3(CO)8(PH2Mes)(μ-H)23-PMes)] (2), [Ru3(CO)93-PMes)2] (3), [Ru4(CO)10(μ-CO)(μ4-PMes)2] (4), and [Ru5(CO)10H24-PMes)(μ3-PMes)2] (5). All products were fully characterized and structurally confirmed by X-ray crystal structure analysis. Complexes 2-4 were also obtained in high yields by stepwise reaction starting from 1. Fluxional behavior of carbonyl groups was observed in case of 4. Complex 5 reveals a new type of skeletal structure, bicapped-octahedron having μ3- and μ4-phosphinidene ligands at the capping positions. Similar reaction of [Os3(CO)12] with PH2Mes yielded a phosphido-bridged osmium cluster [Os3(CO)10(μ-H)(μ-PHMes)] (6) and a phosphinidene-capped cluster [Os3(CO)9(μ-H)23-PMes)] (7).  相似文献   

18.
Reaction of [Ru3(CO)93112-PhP(C6H4)CH2PPh}] (1) with tri(2-thienyl)phosphine (PTh3) in refluxing THF afforded [Ru3(CO)9(PTh3)(μ-dpbm)] (3) {dpbm = PhP(C6H4)(CH2)PPh} and [Ru3(CO)6(μ-CO)2{μ-κ11-PTh2(C4H2S)}{μ312-Ph2PCH2PPh}] (5) in 18% and 12% yields, respectively, while a similar reaction with tri(2-furyl)phosphine (PFu3) gave [Ru3(CO)9(PFu3)(μ-dpbm)] (4) and [Ru3(CO)7(μ-η12-C4H3O)(μ-PFu2){μ3112-PhP(C6H4)CH2PPh}] (6) in 24% and 27% yields, respectively. Compounds 2 and 4 are phosphine adducts of 1 in which the diphosphine ligand is transformed into 1,3-diphenyl-2,3-dihydro-1H-1,3-benzodiphosphine (dpbm) via phosphorus-carbon bond formation. Cluster 5 results from metalation of a thienyl ring, the cleaved proton being transferred to the diphosphine. Carbon-phosphorus bond cleavage of a PFu3 ligand is observed in 6 to afford a phosphido-bridge and a furyl fragment, the latter bridging in a σ,π-vinyl fashion. The molecular structures of 3, 5 and 6 have been determined by X-ray diffraction studies.  相似文献   

19.
The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts rapidly with the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at room temperature to give bmi-bridged cluster 1,2-Os3(CO)10(bmi) (2b) as the major product, along with the chelating isomer 1,1-Os3(CO)10(bmi) (2c) and the hydride-bridged cluster HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) as minor by-products. All three cluster compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and X-ray crystallography in the case of 2c. Cluster 2b is unstable and readily isomerizes to 2c in quantitative yield on mild heating. The kinetics for the conversion of 2b → 2c have been measured over the temperature range of 318-348 K in toluene solution, and based on the observed activation parameters a nondissociative isomerization process that proceeds via a transient μ2-bridged phosphine moiety is presented. Near-UV photolysis of cluster 2c at room temperature affords HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) with a quantum yield of 0.017. The reactivity of clusters 2b, 2c, and 3 is discussed with respect to related diphosphine-substituted Os3(CO)10(P-P) clusters prepared by our groups.  相似文献   

20.
Thecloso octahedral cluster Ru4(CO)114-PPh)(μ4-S)1 and selenium and tellurium analogues, the first examples of unsaturated ruthenium clusters with a planar metal core and different main group 15 and 16 atoms have been synthesized fromnido Ru4(CO)133-PPh). An X-ray analysis of1 and Ru4(CO)104-PPh)(μ4-Se)(PEt3)2a has confirmed thetrans disposition of phosphorus and group 16 main group fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号