首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The catalytic system of[2-(2-benzimidazolyl)-6-((1-aryliminoethyl)pyridyl)]nickel chloride/MAO(methylalu- minoxane)was found to be good active for vinyl polymerization of norbornene and provided polymers with relative narrow molecular distributions.Various reaction parameters,such as the ratios of nickel precursor to MAO or monomer norbornene, and the nature of the ligands in complexes were carefully investigated to realize their effects on the catalytic activities, polymer molecular weight and molecular...  相似文献   

2.
Norbornene polymerizations with nickel complexes bearing [N,N] six-membered chelate ring activated with methylaluminoxane were investigated. The influence of ligand structure such as β-diimine, β-diketiminate, fluorinated β-diketiminate, and anilido-imine ligand on catalytic activities for norbornene polymerization was evaluated in detail. Ligands led to different electrophilicity of the nickel metal center, and a relatively positive nickel metal center would result in high catalytic activities for norbornene polymerization. The influences of polymerization temperature and Al/Ni ratio on norbornene polymerization with nickel catalysts bearing β-diimine, β-diketiminate, and fluorinated β-diketiminate ligands were also examined. All of the obtained polymers catalyzed by these nickel catalysts bearing [N,N] ligand are vinylic addition polynorbornenes with different molecular weights.  相似文献   

3.
Vinyl polymerized norbornene has some useful properties such as good mechanical strength, optical transparency and heat resistance. Several transition metal complexes have been described in the literature as active catalysts for the vinyl polymerization of norbornene. We now report the use of three types of nickel(II) complexes with N‐heterocyclic carbene (NHC) ligands in the catalytic vinyl polymerization of norbornene under a range of conditions. Specifically, two nickel complexes bearing a chelating bis(NHC) ligand, two nickel complexes bearing two chelating anionic N‐donor functionalized NHC ligands as well as one diiodidonickel(II) complex with two monodentate NHC ligands were tested. The solid‐state structure of bis(1,3‐dimethylimidazol‐2‐ylidene)diiodidonickel(II), as determined by X‐ray crystallography, is presented. The highest polymerization activity of 2.6 × 107 g (mol cat)?1 h?1 was observed using the latter nickel complex as catalyst, activated by methylaluminoxane. The norbornene polymers thus obtained are of high molecular weight but with rather low polydispersity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A series of salicylaldimines,synthesized in high yield via microwave-assisted condensation of salicylaldehyde and 2-alkoxyaniline were allowed to react with nickel chloride to form six-coordinated nickel complexes.These nickel complexes were carefully characterized,and the solid structure of la was elucidated by X-Ray diffraction.Activated with MAO,the nickel complexes showed good activity for homopolymerization of norbornene.Reaction parameters,such as the ratio of nickel precursor to MAO,monomer concentration,reaction time and the reaction temperature,as well as the nature of the ligands were found to have significant effects on the catalytic activity and some properties of the resulting polynorbornene.  相似文献   

5.
The novel nickel (II) complexes (2a, 2b) bearing 1-pyridyl-(3-substituedimidazole-2-thione) ligands were synthesized by the reaction of the corresponding ligands with NiBr2(DME). 2a and 2b have been characterized by IR, NMR and elemental analysis. The nickel complexes show high catalytic activities for norbornene polymerization in the presence of MAO (methylaluminoxane), although low activities for ethylene polymerization.  相似文献   

6.
A series of salicylaldimines, synthesized in high yield via microwave-assisted condensation of salicylaldehyde and 2-alkoxyaniline were allowed to react with nickel chloride to form six-coordinated nickel complexes. These nickel complexes were carefully characterized, and the solid structure of la was elucidated by X-Ray diffraction. Activated with MAO, the nickel complexes showed good activity for homopolymerization of norbornene. Reaction parameters, such as the ratio of nickel precursor to MAO, monomer concentration, reaction time and the reaction temperature, as well as the nature of the ligands were found to have significant effects on the catalytic activity and some properties of the resulting polynorbornene.  相似文献   

7.
双吡唑亚胺镍/甲基铝氧烷催化降冰片烯的聚合   总被引:1,自引:1,他引:0  
合成了两种双吡唑亚胺镍配合物: 双-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.1)和双-4-甲氧基-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.2). 研究了Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯(NBE)单体聚合的催化性能, 考察了各种聚合条件, 如温度、Al/Ni摩尔比及催化剂浓度对降冰片烯的催化效率、单体转化率、聚合物分子量及分子量分布的影响. 研究结果表明, Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯聚合具有较高的催化效率, 可达到105 g PNBE/(mol Ni)数量级, 所得聚降冰片烯(PNBE)的重均分子量在105以上, 分子量分布指数在2左右. 聚合产物的1H NMR和FTIR谱分析结果表明, 该聚合反应是以单体的乙烯基加成聚合机理进行的.  相似文献   

8.
Reaction of lithium salts of anilido-imine ligands bearing bulky substituentes on the nitrogen donor atoms with trans-chloro(phenyl)bis(triphenylphosphane)nickel(II) results in the formation of two rare three-coordinate nickel(I) complexes [(Ar1N=CHC6H4NAr2)Ni(I)PPh3] (1: Ar1 = Ar2 = 2,6-i-Pr2C6H3; 2: Ar1 = 2,6-Me2C6H3, Ar2 = 2,6-i-Pr2C6H3). The molecular structures of complexes 1 and 2 have been confirmed by single crystal X-ray analyses. These two complexes exhibit paramagnetic properties as measured by their EPR and 1H NMR spectra. After being activated with methylaluminoxane (MAO) these complexes could polymerize norbornene to afford addition-type polynorbornene (PNB) with high molecular weight M(w) (10(6) g mol(-1)), catalytic activities being high, up to 2.82 x 10(7) g(PNB) mol(-1)(Ni) h(-1).  相似文献   

9.
Ethylene–norbornene (E–N) copolymerizations were carried out by using β-diketiminato nickel complexes CH{C(CF3)NAr}2NiBr (Ar = 2,6-iPr2C6H3, 1; Ar = 2,6-Me2C6H3, 2) in the presence of methylaluminoxane (MAO). Complex 1 bearing bulky isopropyl ortho substituents showed higher activity than 2 for the E–N copolymerization. The activity of the catalytic systems increased with increasing the feed ratio of norbornene/ethylene (N/E), and gave the E–N copolymers with high norbornene content more than 75 mol%. In the microstructures of copolymers generated with the catalytic systems, norbornene microblocks with a length of two or three norbornene units have been detected. Results have shown that the activity and the content of norbornene in copolymer depend on the N/E feed ratio.  相似文献   

10.
Herein reported are investigations of norbornene polymerization by novel anilido–imino nickel complexes [(Ar1NCHC6H4NAr2)NiBr]2 (Ar1 = Ar2 = 2,6-dimethylphenyl, 1; Ar1 = 2,6-dimethylphenyl, Ar2 = 2,6-diisopropylphenyl, 2; Ar1 = Ar2 = 2,6-diisopropylphenyl, 3; Ar1 = 2,6-diisopropylphenyl, Ar2 = 2,6-dimethylphenyl, 4) activated with methylaluminoxane (MAO). It was found that at polymerization temperatures below 50 °C, the average molecular weights of the obtained polynorbornenes catalyzed by these four catalytic systems increase with raising temperature, displaying bimodal distribution in GPC curves. The abnormal influence of polymerization temperature could be attributed to the existence of two kinds of catalytic species: heterobimetallic species LNi(II)(μ-Me)2AlMe2 (I) and monometallic species LNi(II)Me (II) (L = anilido–imino ligand) at lower temperature. The former affords a lower molecular weight polymer and the latter higher molecular weight one. With raising polymerization temperature above 50 °C, the species I disappears and only species II exists in polymerization systems, resulting in a normal relation of molecular weight to polymerization temperature. From a kinetic study of the norbornene polymerization catalyzed by 1/MAO catalyst at 70 °C, the polymerization rate (Rp) can be expressed by the formulation: Rp = k[NBE]1.93[Ni]0.88. Moreover, the mechanism of the norbornene polymerization using the anilido–imino nickel complexes activated with MAO is also presented and discussed.  相似文献   

11.
The ring-opening metathesis polymerization (ROMP) of norbornene catalyzed by bis(acetonitrile) molybdenum and tungsten complexes, [M(η3-C3H5)Cl(CO)2(NCMe)2] (1-Mo: M = Mo, 1-W: M = W), which have two labile acetonitrile ligands, has been investigated. These complexes catalyzed the ROMP of norbornene as a single-component initiator. The highly cis-selective polymerization proceeded in a THF solution (95% for 1-Mo and 96% for 1-W), whereas polymerization in CH2Cl2 or toluene resulted in lower cis selectivity. The polymerization of terminal acetylenes using these complexes was also examined. The tungsten complex 1-W showed a high catalytic activity for the polymerization of terminal acetylenes, such as phenyl- and tert-butylacetylene. A highly active catalytic system for the ROMP of norbornene was achieved by the activation of the tungsten complex, 1-W, with one equivalent of phenylacetylene, giving poly(norbornene) with a high molecular weight (Mn = 391 × 104) and a high cis selectivity (cis  89%).  相似文献   

12.
The key trends for the development of catalytic reactions of allyllic esters of carboxylic acids with norbornene, norbornadiene, and their heterocyclic analogs in the presence of the nickel and palladium complexes are discussed. The main approaches to investigation of the mechanism using model stoichiometric reactions and quantum chemical calculations are described. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 823–830, April, 2008.  相似文献   

13.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

14.
A catalytic system of new titanium complexes with methylaluminoxane (MAO) was found to effectively polymerize ethylene for high molecular weight polyethylene as well as highly active copolymerization of ethylene and norbornene. The bis (imino‐indolide)titanium dichlorides (L2TiCl2, 1 – 5 ), were prepared by the reaction of N‐((3‐chloro‐1H‐indol‐2‐yl)methylene)benzenamines with TiCl4, and characterized by elemental analysis, 1H and 13C NMR spectroscopy. The solid‐state structures of 1 and 4 were determined by X‐ray diffraction analysis to reveal the six‐coordinated distorted octahedral geometry around the titanium atom with a pair of chlorides and ligands in cis‐forms. Upon activation by MAO, the complexes showed high activity for homopolymerization of ethylene and copolymerization of ethylene and norbornene. A positive “comonomer effect” was observed for copolymerization of ethylene and norbornene. Both experimental observations and paired interaction orbital (PIO) calculations indicated that the titanium complexes with electron‐withdrawing groups in ligands performed higher catalytic activities than those possessing electron‐donating groups. Relying on different complexes and reaction conditions, the resultant polyethylenes had the molecular weights Mw in the range of 200–2800 kg/mol. The influences on both catalytic activity and polyethylene molecular weights have been carefully checked with the nature of complexes and reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3415–3430, 2007  相似文献   

15.
A series of nickel and palladium complexes bearing (imino)pyridyl alcohol tridentate [N,N,O] ligands, 2-(ArNCMe)-6-{(HO)CR2}C5H3N (L1-L4), were synthesized and sufficiently characterized by elemental and spectroscopic analysis along with X-ray diffraction analysis. The X-ray diffraction demonstrated that five-coordinated nickel halide complexes (1a-4a and 1b) and six-coordinated nickel acetate complex (1c) were prepared, and cationic palladium complexes (1d and 2d) formed with the [PdCl4]2− counterion. All these complexes displayed high catalytic activities up to 1.883 × 107 g(PNB) mol−1(cat) h−1 (2d) for the vinyl polymerization of norbornene on treatment with excess methylaluminoxane (MAO), affording the vinyl-type PNBs with high molecular weights and relatively narrow molecular weight distributions. The parameters of reaction conditions, the type of metals and steric effects of coordinative ligands had influences on the catalytic properties.  相似文献   

16.
The turnover frequency and number have been determined for eighteen catalytic systems based on triphenylphosphine and 1,4-diazo-1,3-butadiene complexes of nickel in the formal oxidation states 0, +1, and +2 in the oligoand polymerization of lower alkenes. The main catalytic characteristics are almost independent of the oxidation state of nickel in the precursor and depend on the nature and concentration of the cocatalyst (Lewis acid). The catalytic systems have been studied by ESR. The ESR spectral parameters are presented for nickel(I) 1,4-diazo-1,3-butadiene complexes and radical anions resulting from the reactions of the cocatalyst with nickel α-diimine complexes. Reactions describing the formation, functioning, decomposition, and regeneration of the catalytically active nickel hydride complexes are proposed.  相似文献   

17.
Four multinuclear nickel complexes derived from generation 1 (G1) and generation 2 (G2) dendrimeric salicylaldimine ligands based poly(propyleneimine) dendrimer scaffolds of the type, DAB-(NH2)n (n = 4 or 8, DAB = diaminobutane) were evaluated as catalysts precursors in the polymerization of norbornene, using methylaluminoxane as co-catalyst. All four catalyst evaluated were found to be active for norbornene polymerization giving polymers with moderate to high molecular weights and low polydispersity indices. The polymerization results indicate that there is some sort of dendritic effect, in that the catalyst activity appears to be influenced by the dendrimer generation.  相似文献   

18.
A series of nickel complexes LNiCl2 (C1C16), where L represents 2-benzoimidazol-8-alkylquinoline and its derivatives, were prepared as potential catalysts for the oligomerization of ethylene. The molecular structure of a representative complex C2·CH3CH2OH was determined by single-crystal X-ray diffraction. Upon treatment with diethylaluminium chloride (Et2AlCl), all nickel complex pre-catalysts exhibited good activities in the oligomerization of ethylene. Furthermore, in the presence of methylaluminoxane (MAO), the nickel pre-catalysts were suitable for vinyl polymerization of norbornene.  相似文献   

19.
Wang  Kai-ti  Wang  Yong-xia  Wang  Bin  Li  Yan-guo  Li  Yue-sheng 《高分子科学》2017,35(9):1110-1121
Several novel mono( ?-enaminoketonato) vanadium complexes bearing constrained cyclic skeleton, including[(C6H5)C6H3C(O) = C(CH2)nCH = N ― Ar]VCl2(THF)2(V3a: n = 1, Ar = C6H5; V4a: n = 2, Ar = C6H5; V4b: n = 2, Ar =C6F5; V4c: n = 2, Ar =(C3H7)2C6H3; V5a: n = 3, Ar = C6H5), were synthesized and their structure and properties were characterized. The structures of V4 c and V5 a in solid-state were further confirmed by X-ray crystallographic analysis.Density functional theory(DFT) results indicated that these complexes showed enhanced steric hindrance around the metal center as compared with the acyclic analogues. Upon activation with Et2 Al Cl and in the presence of ethyl trichloroacetate as a reactivator, all of the complexes exhibited high catalytic activities(107 g PE/(mol V·h)) toward ethylene polymerization, and the obtained polymers exhibited unimodal distributions(Mw/Mn = 2.0-2.3) even produced at elevated temperatures(70-100 °C) and prolonged reaction time. When MAO was employed as a cocatalyst, they only showed moderate catalytic activities(105 g PE/(mol V·h)), but the resulting polymers had higher molecular weights(168-241 kg/mol). These vanadium complexes with cyclic skeleton also showed high catalytic activities toward ethylene/norbornene copolymerization. The produced copolymers displayed approximate alternating structure at high in-feed concentration of norbornene. The catalytic capabilities of these complexes could be tuned conveniently by varying ligand structure. Furthermore, the cyclic voltammetry results also proved that these complexes exhibited better redox stabilities than the complexes bearing linear skeleton.  相似文献   

20.
Two nickel(II) complexes of {2‐[C3HN2(R1)2‐3,5]}[C(R2)?N(C6H3iPr2‐2,6)]NiBr2 (complex 1 : R1 = CH3, R2 = 2,4,6‐trimethylphenyl; complex 2 : R1 = R2 = Ph) were synthesized and characterized. The solid‐state structure of complex 1 has been confirmed by X‐ray single‐crystal analysis. Activated by methylaluminoxane (MAO), complexes 1 and 2 are capable of catalyzing the polymerization of norbornene with moderate activities [up to 10.56 × 105 gPNBE (mol Ni h)?1] with high molecular weights (Mw?13.56 × 105 g mol?1) and molecular weight distributions were around 2. The influences of polymerization parameters such as reaction temperature and Al–Ni molar ratio on catalytic activity and molecular weight of the polynorbornene were investigated in detail. The obtained polynorbornenes were characterized by means of 1H‐NMR and FTIR techniques. The analytical results of polymer structures indicated that the norbornene polymerization is vinyl‐type polymerization rather than ROMP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号