首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Treatment of the tetrameric group eight fluoride complexes [MF(μ-F)(CO)3]4 [M = Ru (1a), Os (1b)] with the alkynylphosphane, Ph2PCCPh, results in fluoride-bridge cleavage and the formation of the air-sensitive monomeric octahedral complexes [MF2(CO)2(PPh2CCPh)2] [M = Ru (2a), Os (2b)] in high yield. The molecular structure of 2b reveals a cis, cis, trans configuration for each pair of ligands, respectively. The free alkyne moieties in 2 can be readily complexed to hexacarbonyldicobalt fragments by treatment with dicobalt octacarbonyl to afford [MF2(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2] [M = Ru (3a), Os (3b)]. Evidence for an intramolecular non-bonded contact between a bound fluoride and a cobalt carbonyl carbon atom is seen in the molecular structure of 3a. Thermolysis of 3a at 50 °C results in fluoride dissociation to give [RuF(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2]+ (4), while no reaction occurred with the osmium analogue. Prolonged thermolysis at 120 °C in a sealed vessel of both 3a and 3b gave only insoluble decomposition products.  相似文献   

2.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

3.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

4.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

5.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

6.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

7.
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a.  相似文献   

8.
A series of tricarbonyl rhenium(I) and manganese(I) complexes of the electroactive 2-(pyrazolyl)-4-toluidine ligand, H(pzAnMe), has been prepared and characterized including by single crystal X-ray diffraction studies. The reactions between H(pzAnMe) and M(CO)5Br afford fac-MBr(CO)3[H(pzAnMe)] (M = Mn, 1a; Re, 1b) complexes. The ionic species {fac-M(CH3CN)(CO)3[H(pzAnMe)]}(PF6) (M = Mn, 2a; Re, 2b) were prepared by metathesis of 1a or 1b with TlPF6 in acetonitrile. Complexes 1a and 1b partly ionize to {M(CH3CN)(CO)3[H(pzAnMe)]+}(Br) in CH3CN but retain their integrity in less donating solvents such as acetone or CH2Cl2. Each of the four metal complexes reacts with (NEt4)(OH) in CH3CN to give poorly-soluble crystalline [fac-M(CO)3(μ-pzAnMe)]2 (M = Mn, 3a; Re, 3b). The solid state structures of 3a and 3b are of centrosymmetric dimeric species with bridging amido nitrogens and with pyrazolyls disposed trans- to the central planar M2N2 metallacycle. In stark contrast to the diphenylboryl derivatives, Ph2B(pzAnMe), none of the tricarbonyl group 7 metal complexes are luminescent.  相似文献   

9.
A series of titanocene(III) alkoxides L2Ti(III)OR where L = Cp, R = Et(1b), tBu(1a), 2,6-Me2C6H3(1c), 2,6-tBu2-4-Me-C6H2(1d), or L = Cp*, R = Me(2e), tBu(2a), Ph(2f) was synthesized and subjected to reaction with [CpM(CO)3]2 [M = Mo, W], [CpRu(CO)2]2, and Co2(CO)8. The Ti(III) precursors 1a, 1c, 2a, 2e, and 2f reacted with [CpM(CO)3]2 [M = Mo, W] to form heterobimetallic complexes L2Ti(OR)(μ-OC)(CO)2MCp [M = Mo, W], of which Ti and M are linked by an isocarbonyl bridge. Reactions of these Ti(III) complexes with Co2(CO)8 resulted in formation of Ti-Co1 heterobimetallic complexes, from 2a, 2e, or 2f, or Ti-Co3 tetrametallic complexes, Cp2Ti(OtBu)(μ-OC)Co3(CO)9 from 1a, 1b, or 1c. The products were characterized by NMR, IR, and X-ray crystallography. Reaction mechanisms were proposed from these results, in particular, from steric/electronic effects of titanium alkoxides.  相似文献   

10.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

11.
The heteroditopic, P-N-chelating ligand diphenylphosphino(phenyl pyridin-2-yl methylene)amine (1) has been synthesised via a simple ‘one-pot’ procedure and its donor characteristics assessed. The neutral [MX(Y)(12-P-N)] (3, M = Rh, X = Cl, Y = CO; 4, M = Pd, X = Y = Cl; 5, M = Pd, X = Cl, Y = Me; 6, M = Pt, X = Y = Cl; 7, M = Pt, X = Cl, Y = Me; 8, M = Pt, X = Y = Me) and cationic [Pd(Me)(MeCN)(12-P-N)][Z] (9, Z = B{3,5-(CF3)2-C6H3}4; 10, Z = PF6) complexes of 1 have been prepared and characterised. The solid-state structures of complexes 3, 4, 6 and 7 have been established by X-ray crystallography. Reactions of [PdCl(Me)(12-P-N)] towards CO and tBuNC have been investigated, affording the corresponding η1-acyl (12) and -iminoacyl (14) complexes, respectively. Similar insertion chemistry is observed for the cationic derivative 9. Treatment of the acyl complex 12 with ethene at elevated pressure establishes an equilibrium between the starting material and the product resulting from insertion, 13. Under catalytic conditions, combination of palladium(II) with 1 in MeOH affords a selective initiator for the formation of 4-oxo-hexanoic acid methyl ester (15) from CO/ethene (38 bar, 90 °C).  相似文献   

12.
Reaction of copper(I) chloride with 1,3-imidazoline-2-thione (imzSH) in the presence of Ph3P in 1:2:2 or 1:1:2 (M:L:PPh3) molar ratios yielded a compound of unusual composition, [Cu2(imzSH)(PPh3)4Cl2] · CH3OH (1), whose X-ray crystallography has shown that its crystals consist of four coordinated [CuCl(1κS-imzSH)(PPh3)2] (1a), and three coordinated [Cu(PPh3)2Cl] (1b) independent molecules in the same unit cell. In contrast, crystals of complexes of copper(I) bromide/iodide are formed by single molecules of [CuBr(1κS-imzSH)(PPh3)2] · H2O (2) and [CuI(1κS-imzSH)(PPh3)2] (3), respectively, similar to molecule 1a. The related ligand, 1,3-benzimidazoline-2-thione (bzimSH) formed a complex [CuBr(1κS-bzimSH)(PPh3)2] · CH3COCH3 (4), similar to 2. The formation of 1a and 1b has been also revealed by NMR spectroscopy. The NMR spectra of 24 also showed weak signals indicating formation of compounds similar to 1b. It reveals that the lability of the Cu–S bond varies in the order: Cl ? Br ∼ I. Weak interactions {e.g. C–H?π electrons of ring, –NH?halogens/oxygen, C–H?halogens/oxygen, π?π (between rings)} have played an important role in building 2D chains of complexes 14.  相似文献   

13.
Novel heterodinuclear organopalladium complexes having an unsymmetrical PN ligand (Et2NC2H4PPh22N,P)RPd-MLn (MLn = Co(CO)4; R = Me (2a), Ph (2b), MLn = MoCp(CO)3; R = Ph (3b)) are synthesized by metathetical reactions of PdRX(Et2NC2H4PPh22N,P) (X = I, NO3) with Na+[MLn]. Reversible dissociation of the Pd-N bond in 3b is revealed by variable temperature NMR studies. Reactions of 2a and 2b with CO yield corresponding acyl complexes (Et2NC2H4PPh22N,P)(RCO)Pd-Co(CO)4 (R = Me (5a), Ph (5b)). Rate of CO insertion for 2a and 2b is significantly faster than those for mononuclear methylpalladium complex, PdMeI(Et2NC2H4PPh22N,P) (1a), and methylpalladium-cobalt complex with a 1,2-bis(diphenylphosphino)ethane (dppe) ligand, (dppe-κ2P,P′)MePd-Co(CO)4 (6a). 5a smoothly reacts with nucleophiles such as diethylamine, methanol and benzenethiol to give corresponding amide, ester and thioester, respectively. These reactions of 5a are also significantly faster than those of corresponding mononuclear analogues and the similar heterodinuclear complexes with symmetrical bidentate ligands such as 1,2-bis(diphenylphosphino)ethane or N,N,N′,N′-tetramethylethylenediamine ligand.  相似文献   

14.
The synthesis of 1,3-diarylimidazolidin-2-ylidene (NHC) precursor, 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride, (3b) has been extended to the electronically and sterically modified NHC precursors 3a (X = H), 3c (X = Br) and 3e (X = Cl) in order to investigate the electronic effect of a p-substituent (X) on cross-coupling catalysts. Complexes of the type PdCl2(NHC)2 (5), PdCl2(NHC)(PPh3) (6) and [RhCl(NHC)(cod)] (7) were prepared from 3 or 4d (1,3-bis(2,4-dimethylphenyl)-2-trichloromethylimidazolidin). Initial decomposition temperatures of the complexes 5 and 6 were determined by TGA. In situ formed complexes from Pd(OAc)2 and 3 as well as the preformed complexes 5 and 6 have been tested as catalysts in coupling of phenylboronic acid with 4-haloacetophenones. The electron donating ability of NHCs derived from 3 was assessed by measuring C-O frequencies in the respective [RhCl(NHC)(CO)2] complex 8 which was prepared by replacement of cod ligand of 7 with CO. An interesting correlation between the electron-donating nature of the aryl substituent and catalytic activity and also initial decomposition temperature of the complexes 5 and 6 was observed.  相似文献   

15.
A straightforward method for the preparation of metallo carbosiloxanes of type Si(OCH2CH2CH2SiMe2[OCH2PPh2M(CO)n])4 (n = 3, M = Ni, 7a; n = 4, M = Fe, 7b; n = 5: M = Mo, 7c; M = W, 7d), Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)4 (8) and Me2Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)2 (11) is described. The reaction of Si(OCH2CH2CH2SiMeXCl)4 (1: X = Me, 2: X = Cl) or Me2Si(OCH2CH2CH2SiMeCl2)2 (9) with HOCH2PPh2 (3) produces Si(OCH2CH2CH2SiMe2(OCH2PPh2))4 (4), Si(OCH2CH2CH2SiMe(OCH2PPh2)2)4 (5) or Me2Si(OCH2CH2CH2SiMe(OCH2PPh2)2)2 (10) in presence of DABCO. Treatment of the latter molecules with Ni(CO)4 (6a), Fe2(CO)9 (6b), M(CO)5(Thf) (6c: M = Mo; 6d: M = W), respectively, gives the title compounds 7a-7d, 8 and 11 in which the PPh2 groups are datively bound to a 16-valence-electron metal carbonyl fragment.The formation of analytical pure and uniform branched and dendritic metallo carbosiloxanes is based on elemental analysis, and IR, 1H, 13C{1H}, 29Si{1H} and 31P{1H} NMR spectroscopic studies. In addition, ESI-TOF mass spectrometric studies were carried out.  相似文献   

16.
The salts [S(NMe2)3][MF6] (M = Nb, 2a; M = Ta, 2b) and [S(NMe2)3][M2F11] (M = Nb, 2c; M = Ta, 2d) have been prepared by reacting MF5 (M = Nb, 1a; M = Ta, 1b) with [S(NMe2)3][SiMe3F2] (TASF reagent) in the appropriate molar ratio. The solid state structure of 2b has been ascertained by X-ray diffraction. The 1:1 molar ratio reactions of 1a with a variety of organic compounds (L) give the neutral adducts NbF5L [L = Me2CO, 3a; L = MeCHO, 3b; L = Ph2CO, 3c; L = tetrahydrofuran (thf), 3d; L = MeOH, 3e; L = EtOH, 3f; L = HOCH2CH2OMe, 3g; L = Ph3PO, 3h; L = NCMe, 3i] in good yields. The complexes MF5L [M = Nb, L = HCONMe2, 3j; M = Nb, L = (NMe2)2CO, 3k; M = Ta, L = (NMe2)2CO, 3l; M = Nb, L = OC(Me)CHCMe2, 3m] have been detected in solution in admixture with other unidentified products, upon 2:1 molar reaction of 1 with the appropriate reagent L. The ionic complexes [NbF4(tht)2][NbF6], 4a, and [NbF4(tht)2][Nb2F11], 4b, have been obtained by combination of tetrahydrothiophene (tht) and 1a, in 1:1 and 2:3 molar ratios, respectively. The treatment of 1 with a two-fold excess of L leads to the species [MF4L4][MF6] [M = Nb, L = HCONMe2, 5a; M = Ta, L = HCONMe2, 5b; M = Nb, L = thf, 5c; M = Ta, L = thf, 5d; M = Nb, L = OEt2, 5e]. The new complexes have been fully characterised by NMR spectroscopy. Moreover, the revised 19F NMR features of the known compounds MF5L [M = Ta, L = Me2CO, 3n; M = Ta, L = Ph2CO, 3o; M = Ta, L = MePhCO, 3p; M = Ta, L = thf, 3q; M = Nb, L = CH3CO2H, 3r; M = Nb, L = CH2ClCO2H, 3s; M = Ta, L = CH2ClCO2H, 3t], TaF4(acac), TaF4(Me-acac) and [TaF(Me-acac)3][TaF6] (Me-acac = methylacetylacetonato anion) are reported.  相似文献   

17.
A series of mononuclear ruthenium complexes containing pyridine- and pyrimidine-2-thiolato ligands was prepared and characterized. The new compounds of general formula CpRu(PPh3)(κ2S,N-SR) (1) (SR = pyridine-2-thiolate (a), pyrimidine-2-thiolate (b)) were prepared directly by reacting the thiolato anions (RS) with CpRu(PPh3)2Cl. Complexes 1 readily react with NOBF4 or CO in THF at room temperature to give [CpRu(PPh3)(NO)(κ1S-HSR)][BF4]2 (2) and CpRu(PPh3)(CO)(κ1S-SR) (3), respectively. The one-pot reaction of CpRu(PPh3)2Cl, thiolato anions and bis(diphenylphosphino)ethane (dppe) gave CpRu(dppe)(κ1S-SR) [dppe: Ph2PCH2CH2PPh2 (4)]. The complex salts, [CpRu(PPh3)21S-HSR)]BPh4 (5) are prepared by mixing CpRu(PPh3)2Cl, HSR and NaBPh4 at room temperature. The structures of CpRu(PPh3)(κ2S,N-Spy) (1a), [CpRu(PPh3)(NO)(κ1S-HSpy)][BF4]2 (2a) and CpRu(PPh3)(CO)(κ1S-Spy) (3a), (py = C5H4N) have been determined.  相似文献   

18.
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis.  相似文献   

19.
A series of 2,6-bis(imino)pyridyl iron(II) and cobalt(II) complexes [2,6-(ArNCMe)2C5H3N]MCl2 (Ar = 2,6-i-Pr2C6H3, M = Fe: 3a, M = Co: 4a; Ar = 2,4,6-i-Pr3C6H2, M = Fe: 3b, M = Co: 4b; Ar = 2,6-i-Pr2-4-BrC6H2, M = Fe: 3c, M = Co: 4c; Ar = 2,4-i-Pr2-6-BrC6H2, M = Fe: 3d, M = Co: 4d) has been synthesized, characterized, and investigated as precatalysts for the polymerization of ethylene in the presence of modified methylaluminoxane (MMAO). The substituents of pyridinebisimine ligands and their positions located significantly influence catalyst activity and polymer property. It is found that the catalytic activities of the iron complexes/MMAO systems are mainly dominated by electronical effect, while those of the cobalt complexes/MMAO systems are primarily controlled by hindering effect.  相似文献   

20.
1-Alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR 1; β-NaiR, 2) react with [Os(H)(Cl)(CO)(PPh3)3] in THF and synthesise [Os(H)(CO)(PPh3)2(α/β-NaiR)](PF6) (3, 4). The X-ray structure of [Os(H)(CO)(PPh3)2(α-NaiEt)](PF6) (3c) shows a distorted octahedral geometry. Other spectroscopic studies (IR, UV–Vis, NMR) support the stereochemistry of the complexes. Addition of Cl2 in MeCN to 3 or 4 gives [Os(Cl)(CO)(α/β-NaiR)(PPh3)2](PF6) (5, 6), which were characterized by spectroscopic studies. The redox properties of the complexes show Os(III)/Os(II), Os(IV)/Os(III) and azo reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号