首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The infrared spectrum of mass-selected Na(+)-D(2) complexes is recorded in the D-D stretch vibration region (2915-2972 cm(-1)) by detecting Na(+) photofragments resulting from photo-excitation of the complexes. Analysis of the rotationally resolved spectrum confirms a T-shaped equilibrium geometry for the complex and a vibrationally averaged intermolecular bond length of 2.461 A?. The D-D stretch band centre occurs at 2944.04 cm(-1), representing a -49.6 cm(-1) shift from the Q(1)(0) transition of the free D(2) molecule. Variational rovibrational energy level calculations are performed for Na(+)-D(2) utilising an ab initio potential energy surface developed previously for investigating the Na(+)-H(2) complex [B. L. J. Poad et al., J. Chem. Phys. 129, 184306 (2008)]. The theoretical approach predicts a dissociation energy for Na(+)-D(2) of 923 cm(-1) with respect to the Na(+)+ D(2) limit, reproduces the experimental rotational constants to within 1-2%, and gives a simulated spectrum closely matching the experimental infrared spectrum.  相似文献   

2.
The interactions of alkali metal cations (Li (+), Na (+), and K (+)) with the cup-shaped molecules, tris(bicyclo[2.2.1]hepteno)benzene and tris(7-azabicyclo[2.2.1]hepteno)benzene have been investigated using MP2(FULL)/6-311+G(d,p)//MP2/6-31G(d) level of theory. The geometries and interaction energies obtained for the metal ion complexation with the cup-shaped systems trindene and benzotripyrrole are compared with the results for benzene-metal ion complexes to examine the effect of ring addition to the benzene on structural and binding affinities. The cup-shaped molecules exhibit two faces or cavities (top and bottom). Except for one of the conformers of tris(7-azabicyclo[2.2.1]hepteno)benzene), the metal ions prefer to bind with the top face over bottom face of the cup-shaped molecules. The selectivity of the top face is due to strong interaction of the cation with the pi cloud not only from the central six-membered ring but also from the pi electrons of rim C=C bonds. In contrast, the metal ions under study exhibit preference to bind with the bottom face rather than top face of tris(7-azabicyclo[2.2.1]hepteno)benzene) when the lone pair of electrons of three nitrogen atoms participates in binding with metal ions. This bottom face selectivity could be ascribed to the combined effect of the cation-pi and strong cation-lone pair interactions. As evidenced from the values of pyramidalization angles, the host molecule becomes deeper bowl when the lone pair of electrons of nitrogen atoms participates in binding with cation. Molecular electrostatic potential surfaces nicely explain the cavity selectivity in the cup-shaped systems and the variation of interaction energies for different ligands. Vibrational frequency analysis is useful in characterizing different metal ion complexes and to distinguish top and bottom face complexes of metal ions with the cup-shaped molecules.  相似文献   

3.
A novel 1,2-dithiolate ligand, that is, the 2-(trifluoromethyl)acrylonitrile-1,2-dithiolate, abbreviated here as tfadt, is prepared from the corresponding cyclic dithiocarbonate. This ligand, substituted with both a CN and a CF(3) group, is compared with the well-known maleonitrile- and bis(trifluoromethyl)ethane-1,2-dithiolates. The preparation, electrochemical properties, and X-ray crystal structures of the square-planar nickel complexes, in both their dianionic diamagnetic [Ni(tfadt)(2)](2)(-) and their monoanionic paramagnetic [Ni(tfadt)(2)](*)(-) forms, are reported, as n-Bu(4)N(+), PPh(4)(+), and (18-crown-6)Na(+) salts, respectively. In the [(18-crown-6)Na](2)[Ni(tfadt)(2)] salt, each CN moiety of the [Ni(tfadt)(2)](2)(-) dianion is coordinated to a (18-crown-6)Na(+) cation through a CN...Na interaction [N...Na = 2.481(3) A], affording an "axle with wheels" model where two MeOH molecules act as axle caps. On the other hand, in [(18-crown-6)Na][Ni(tfadt)(2)], each (18-crown-6)Na(+) cation is coordinated on both sides by the CN groups of two monoanionic [Ni(tfadt)(2)](*)(-) complexes with N...Na(+) distances at 2.434(5) and 2.485(4) A, giving rise to heterobimetallic chains with alternating (18-crown-6)Na(+) and [Ni(tfadt)(2)](*)(-) ions. These two examples demonstrate the attractive ability of the CN moieties in the [Ni(tfadt)(2)](2)(-)(,)(*)(-) complexes to coordinate metallic cationic centers. The paramagnetic salts of the anionic [Ni(tfadt)(2)](*)(-) complex follow Curie-type law in the 2-300 K temperature range, indicating the absence of intermolecular magnetic interactions in the solid state. The complexes are found in their trans form in all crystal structures, while density functional theory calculations establish that both forms have essentially the same energy. A cis-trans interconversion process is observed by variable-temperature NMR on the dianionic [Ni(tfadt)(2)](2)(-) complex with a coalescence temperature T(c) of 260 K and a free energy of activation of 51-53 kJ mol(-)(1).  相似文献   

4.
Jet-cooled high-resolution infrared spectra of partially deuterated hydronium ion (HD2O+) in the O-H stretch region (nu3 band) are obtained for the first time, exploiting the high ion densities, long absorption path lengths, and concentration modulation capabilities of the slit-jet discharge spectrometer. Least-squares analysis with a Watson asymmetric top Hamiltonian yields rovibrational constants and provides high level tests of ab initio molecular structure predictions. Transitions out of both the lower (nu3(+)<--0(+)) and the upper (nu3(-)<--0(-)) tunneling levels, as well as transitions across the tunneling gap (nu3(-)<--0(+)) are observed. The nu3(-)<--0(+) transitions in HD2O+ acquire oscillator strength by loss of D(3h) symmetry, and permit both ground-state-[27.0318(72) cm(-1)] and excited-state-[17.7612(54) cm(-1)]-tunneling splittings to be determined to spectroscopic precision from a single rovibrational band. The splittings and band origins calculated with recent high level ab initio six-dimensional potential surface predictions for H3O+ and isotopomers [X. C. Huang, S. Carter, and J. M. Bowman, J. Chem. Phys. 118, 5431 (2003); T. Rajamaki, A. Miani, and L. Halonen, J. Chem. Phys. 118, 10929 (2003)] are in very good agreement with the current experimental results.  相似文献   

5.
Explicitly correlated coupled cluster theory at the CCSD(T)-F12x level (T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys.127, 221106, 2007) has been employed to study structures and vibrations of complexes of type c-C(3)H(3)(+)·L and H(2)C(3)H(+)·L (L = Ne, Ar, N(2), CO(2), and O(2)). Both cations have different binding sites, allowing for the formation of weak to moderately strong hydrogen bonds as well as "C-bound" or "π-bound" structures. In contrast to previous expectations, the energetically most favourable structures of all H(2)C(3)H(+)·L complexes investigated are "C-bound", with the ligand bound to the methylenic carbon atom. The theoretical predictions enable a more detailed interpretation of infrared photodissociation (IRPD) spectra than was possible hitherto. In particular, the bands observed in the range 3238-3245 cm(-1) (D. Roth and O. Dopfer, Phys. Chem. Chem. Phys.4, 4855, 2002) are assigned to essentially free acetylenic CH stretching vibrations of the propargyl cation in "C-bound" H(2)C(3)H(+)·L complexes.  相似文献   

6.
The local environments of Cu(I)-NO adsorption complexes formed in zeolites Cu-L and Cu-ZSM-5 were studied by electron spin resonance (ESR), pulsed electron nuclear double resonance (ENDOR), and hyperfine sublevel correlation spectroscopy (HYSCORE). Cu(I)-NO complexes have attracted special interest because they are important intermediates in the catalytic decomposition of nitric oxide over copper exchanged zeolites. Recently, detailed structures of the complexes in Cu-ZSM-5 zeolites, O2-Al-O2-Cu(I)-NO, have been proposed on the basis of quantum chemical calculations (Pietrzyk, et al. J. Phys. Chem. B 2003, 107, 6105. Dedecek, et al. Phys. Chem. Chem. Phys. 2002, 4, 5406). 27Al pulsed ENDOR and HYSCORE experiments allowed the hyperfine coupling parameters of an aluminum nuclei found in the vicinity of the Cu(I)-NO complex formed in zeolite Cu-L to be estimated. The data indicate that the aluminum atom is located in the third coordination sphere of the adsorbed NO molecule in agreement with the suggested geometry of the adsorption sites. Broad distributions of aluminum nuclear quadrupole and hyperfine coupling parameters and short electron spin relaxation times of the Cu(I)-NO species prevented the determination of the 27Al hyperfine couplings for zeolite Cu-ZSM-5.  相似文献   

7.
Three gallosilicate natrolites with closely similar chemical composition but differing in the distribution of Si and Ga over crystallographically different tetrahedral sites (T-sites) show striking differences in their cation exchange performance. The ability to exchange Na(+) by the larger alkali metal cations decreases upon increasing the size of the cation, as expected, but also with the degree of T-atom ordering. To seek an insight into this phenomenon, the crystal structures of 11 different zeolites, which show variations in degree of T-atom ordering, nature of countercation, and hydration state, have been refined using synchrotron diffraction data. While the three as-made sodium materials were characterized to have a low, medium, and high degree of ordering, respectively, their pore sizes are close to the size of the bare Na(+) cation and much smaller than that of the larger alkali cations, which are nonetheless exchanged into the materials, each one at a different level. Interestingly, large differences are also manifested when the Na(+) back-exchange is performed on the dehydrated K(+) forms, with crystallographic pore sizes too small even to allow the passage of Na(+). Although the thermodynamic data point to small differences in the enthalpy of the Na(+)/K(+) exchange in the three materials, comparison of the "static" crystallographic pore sizes and the diameter of the exchanged cations lead us to conclude that during the exchange process these zeolites undergo significant deformations that dynamically open the pores, allowing cation traffic even for Cs(+) in the case of the most disordered material. In addition to the very large topological flexibility typical of the natrolite framework, we propose as a hypothesis that there is an additional flexibility mechanism that decreases the rigidity of the natrolite chain itself and is dependent on preferential siting of Si or Ga on crystallographically different T-sites.  相似文献   

8.
Two [(bpy)Re(CO)3L]+ complexes (bpy = 2,2'-bipyridine), where L contains an aza-15-crown-5 ether which is linked to Re via an alkenyl- or alkynyl-pyridine spacer, have been synthesised along with model complexes. Solutions of the complexes in acetonitrile have been studied by UV-Vis absorption spectroscopy, and by 1D and 2D 1H NMR spectroscopy. Strong UV-Vis bands, assigned to intraligand charge-transfer transitions localised at the L ligands, blue shift on protonation of the azacrown nitrogen atom or on complexation of alkali-metal (Li+, Na+ and K+) or alkaline-earth metal (Mg2+, Ca2+ and Ba2+) cations to the azacrown; the magnitude of the blue shift is dependent on the cation, with protonation giving the largest shift of ca. 100 nm. Cation binding constants in the range of log K= 1-4 depend strongly on the identity of the metal cation. Protonation or cation complexation causes downfield shifts in the 1H NMR resonances from most of the azacrown and L ligand protons, and their magnitudes correlate with those of the blue shifts in the UV-Vis bands; shifts in the azacrown 1H NMR resonances report on how the different metal cations interact with the macrocycle. UV-Vis and 1H NMR spectra of the free L ligands enable the effect of the Re centre to be assessed. Together, the data indicate that the alkene spacer gives a more responsive sensor than the alkyne spacer by providing stronger electronic communication across the L ligand.  相似文献   

9.
The interfacial structure between the muscovite (001) surface and aqueous solutions containing monovalent cations (3 × 10(-3) m Li(+), Na(+), H(3)O(+), K(+), Rb(+), or Cs(+), or 3 × 10(-2) m Li(+) or Na(+)) was measured using in situ specular X-ray reflectivity. The element-specific distribution of Rb(+) was also obtained with resonant anomalous X-ray reflectivity. The results demonstrate complex interdependencies among adsorbed cation coverage and speciation, interfacial hydration structure, and muscovite surface relaxation. Electron-density profiles of the solution near the surface varied systematically and distinctly with each adsorbed cation. Observations include a broad profile for H(3)O(+), a more structured profile for Li(+) and Na(+), and increasing electron density near the surface because of the inner-sphere adsorption of K(+), Rb(+), and Cs(+) at 1.91 ± 0.12, 1.97 ± 0.01, and 2.26 ± 0.01 ?, respectively. Estimated inner-sphere coverages increased from ~0.6 to 0.78 ± 0.01 to ~0.9 per unit cell area with decreasing cation hydration strength for K(+), Rb(+), and Cs(+), respectively. Between 7 and 12% of the Rb(+) coverage occurred as an outer-sphere species. Systematic trends in the vertical displacement of the muscovite lattice were observed within ~40 ? of the surface. These include a <0.1 ? shift of the interlayer K(+) toward the interface that decays into the crystal and an expansion of the tetrahedral-octahedral-tetrahedral layers except for the top layer in contact with solution. The distortion of the top tetrahedral sheet depends on the adsorbed cation, ranging from an expansion (by ~0.05 ? vertically) in 3 × 10(-3)m H(3)O(+) to a contraction (by ~0.1 ?) in 3 × 10(-3) m Cs(+). The tetrahedral tilting angle in the top sheet increases by 1 to 4° in 3 × 10(-3) m Li(+) or Na(+), which is similar to that in deionized water where the adsorbed cation coverages are insufficient for full charge compensation.  相似文献   

10.
We report Ar-predissociation vibrational spectra of the binary proton-bound hydrates of acetonitrile (AN), AN x H(+) x OH(2) and AN x D(+) x OD(2), in the 600-3800 cm(-1) energy range. This complex was specifically chosen to explore the nature of the intermolecular proton bond when there is a large difference between the electric dipole moments of the two tethered molecules. Sharp, isotope-dependent bands in the vicinity of 1000 cm(-1) are traced to AN x H(+) x OH(2) vibrations involving the parallel displacement of the shared proton along the heavy atom axis, nu(sp)(parallel). These transitions lie much lower in energy than anticipated by a recently reported empirical trend which found the nu(sp)(parallel) fundamentals to be strongly correlated with the difference in proton affinities (DeltaPA) between the two tethered molecules (Roscioli et al., Science, 2007, 316, 249). The different behavior of the AN x H(+) x OH(2) complex is discussed in the context of the recent theoretical prediction (Fridgen, J. Phys. Chem A., 2006, 110, 6122) that a large disparity in dipole moments would lead to such a deviation from the reported (DeltaPA) trend.  相似文献   

11.
A ditopic ion-pair receptor (1), which has tunable cation- and anion-binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([1·F](-) and [1·Cl](-)) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li(+), Na(+), K(+), Cs(+), as their perchlorate salts), ion-dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [1·F](-), no appreciable interaction with the K(+) ion was seen. On the other hand, when this complex was treated with Li(+) or Na(+) ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li(+), Na(+), K(+), treating [1·F](-) with Cs(+) ions gave rise to a stable, host-separated ion-pair complex, [F·1·Cs], which contains the Cs(+) ion bound in the cup-like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [1·Cl](-). Here, no appreciable interaction was observed with Na(+) or K(+). In contrast, treating with Li(+) produces a tight ion-pair complex, [1·Li·Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [1·F](-), treatment of [1·Cl](-) with Cs(+) ions gives rise to a host-separated ion-pair complex, [Cl·1·Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co-transport) and antiport (nitrate-for-chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate-for-chloride anion exchange mechanism.  相似文献   

12.
A series of strong H-bonded complexes of trimethylglycine, also known as betaine, with acetic, chloroacetic, dichloroacetic, trifluoroacetic and hydrofluoric acids as well as the homo-conjugated cation of betaine with trifluoroacetate as the counteranion were investigated by low-temperature (120-160 K) liquid-state NMR spectroscopy using CDF(3)/CDF(2)Cl mixture as the solvent. The temperature dependencies of (1)H NMR chemical shifts are analyzed in terms of the solvent-solute interactions. The experimental data are explained assuming the combined action of two main effects. Firstly, the solvent ordering around the negatively charged OHX region of the complex (X = O, F) at low temperatures, which leads to a contraction and symmetrisation of the H-bond; this effect dominates for the homo-conjugated cation of betaine. Secondly, at low temperatures structures with a larger dipole moment are preferentially stabilized, an effect which dominates for the neutral betaine-acid complexes. The way this second contribution affects the H-bond geometry seems to depend on the proton position. For the Be(+)COO(-)···HOOCCH(3) complex (Be = (CH(3))(3)NCH(2)-) the proton displaces towards the hydrogen bond center (H-bond symmetrisation, O···O contraction). In contrast, for the Be(+)COOH···(-)OOCCF(3) complex the proton shifts further away from the center, closer to the betaine moiety (H-bond asymmetrisation, O···O elongation). Hydrogen bond geometries and their changes upon lowering the temperature were estimated using previously published H-bond correlations.  相似文献   

13.
We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of dibenzo-18-crown-6 (DB18C6) complexes with alkali metal ions (Li(+), Na(+), K(+), Rb(+), and Cs(+)) in a cold, 22-pole ion trap. All the complexes show a number of vibronically resolved UV bands in the 36,000-38,000 cm(-1) region. The Li(+) and Na(+) complexes each exhibit two stable conformations in the cold ion trap (as verified by IR-UV double resonance), whereas the K(+), Rb(+), and Cs(+) complexes exist in a single conformation. We analyze the structure of the conformers with the aid of density functional theory (DFT) calculations. In the Li(+) and Na(+) complexes, DB18C6 distorts the ether ring to fit the cavity size to the small diameter of Li(+) and Na(+). In the complexes with K(+), Rb(+), and Cs(+), DB18C6 adopts a boat-type (C(2v)) open conformation. The K(+) ion is captured in the cavity of the open conformer thanks to the optimum matching between the cavity size and the ion diameter. The Rb(+) and Cs(+) ions sit on top of the ether ring because they are too large to enter the cavity of the open conformer. According to time-dependent DFT calculations, complexes that are highly distorted to hold metal ions open the ether ring upon S(1)-S(0) excitation, and this is confirmed by extensive low-frequency progressions in the UVPD spectra.  相似文献   

14.
Sum frequency generation (SFG) vibrational spectra of D(2)O and/or acetonitrile (CH(3)CN) on a Pt(111) single-crystal electrode were obtained as a function of applied potential in a 5 mol % water/acetonitrile mixed solvent with different 0.1 molar MSO(3)CF(3) salts (M = H(+), Li(+), Na(+), K(+), and Cs(+)). The results provide a very specific model for the composition of the inner Helmholtz layer as a function of potential and surface charge. Acetonitrile dominates the inner layer with the CN group directed toward the metal at potentials where the metal has a positive charge. As the surface becomes negatively charged, the acetonitrile orientation flips 180 degrees, with the CH(3) group pointing toward the surface. At even more negative surface charge, D(2)O displaces acetonitrile from the inner layer and is the predominant molecule on the surface. Here water is present as an oriented molecule with the oxygen end pointing toward the metal. The potential (and surface charge) where water is the dominant molecule in the inner Helmholtz layer is determined by the solvation energy of the cation.  相似文献   

15.
To understand the cation-pi interaction in aromatic amino acids and peptides, the binding of M(+) (where M(+) = Li(+), Na(+), and K(+)) to phenylalanine (Phe) is studied at the best level of density functional theory reported so far. The different modes of M(+) binding show the same order of binding affinity (Li(+)>Na(+)>K(+)), in the approximate ratio of 2.2:1.5:1.0. The most stable binding mode is one in which the M(+) is stabilized by a tridentate interaction between the cation and the carbonyl oxygen (O[double bond]C), amino nitrogen (--NH(2)), and aromatic pi ring; the absolute Li(+), Na(+), and K(+) affinities are estimated theoretically to be 275, 201, and 141 kJ mol(-1), respectively. Factors affecting the relative stabilities of various M(+)-Phe binding modes and conformers have been identified, with ion-dipole interaction playing an important role. We found that the trend of pi and non-pi cation bonding distances (Na(+)-pi>Na(+)-N>Na(+)-O and K(+)-pi>K(+)-N>K(+)-O) in our theoretical Na(+)/K(+)-Phe structures are in agreement with the reported X-ray crystal structures of model synthetic receptors (sodium and potassium bound lariat ether complexes), even though the average alkali metal cation-pi distance found in the crystal structures is longer. This difference between the solid and the gas-phase structures can be reconciled by taking the higher coordination number of the cations in the lariat ether complexes into account.  相似文献   

16.
The interaction of a calix(4)arene derivative, namely 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetra[2-(4-pyridyl)methoxy]calix(4)arene, 1a, and its monomeric component, p-tert-butylphenoxy-4-pyridine, 1b, with metal cations has been investigated in acetonitrile and methanol. (1)H NMR measurements carried out in CD(3)CN show the primary role played by the pyridyl nitrogens in their complexation with metal cations. Conductance measurements demonstrated that for all cations (except mercury) the composition of the metal ion complexes of 1a is 1:1 (ligand:metal cation). However, 1a hosts two mercury cations per unit of ligand. For the monomer 1b, complexes of 2:1 (ligand:metal cation) stoichiometries are formed with the exception of Pb(2+) (1:1 composition). The thermodynamics of complexation of these systems are reported in acetonitrile. Data in methanol are limited to stability constant values for mercury(II) and these ligands. This paper demonstrates for the first time that thermodynamic data for the complexation of the monomeric component of the ligand and metal cations contribute significantly to the interpretation of systems involving cation-calixarene interactions in solution.  相似文献   

17.
We have investigated, using both ab initio and density functional theory methods, the minimum energy structures and corresponding binding energies of the van der Waals complexes between phenol and argon or the nitrogen molecule, and the corresponding complexes involving the phenol cation. Structures were obtained at the MP2 level using a large basis, and the corresponding energies were corrected for basis set superposition error (BSSE), higher order electron correlation effects, and for basis set size. The structures of the global minima were further refined for the effects of BSSE and the corresponding binding energies were evaluated. For each neutral species, we find only a single true minimum, pi bonded for argon and OH bonded for nitrogen. For both cationic species, we find that the OH-bonded complex is preferred over other minima which we have identified as having Ar or N(2) between exogeneous atoms. The ab initio calculations are generally in excellent agreement with experimental binding energies and rotational constants. We find that the B3LYP functional is particularly poor at describing these complexes, while a density functional theory (DFT) method with an empirical correction for dispersive interactions (DFT-D) is very successful, as are some of the new functionals proposed by Zhao and Truhlar [J. Phys. Chem. A 109, 5656 (2005); J. Chem. Theory Comput. 2, 1009 (2006); Phys. Chem. Chem. Phys. 7, 2701 (2005); J. Phys. Chem. A 108, 6908 (2004)]. Both the ab initio and DFT-D methods accurately predict the intermolecular vibrational modes.  相似文献   

18.
Variations in the hydrogen bond network of the Oxy-1.5 DNA guanine quadruplex have been monitored by trans-H-bond scalar couplings, (h2)J(N2N7), for Na(+)-, K(+)-, and NH(4)(+)-bound forms over a temperature range from 5 to 55 degrees C. The variations in (h2)J(N2N7) couplings exhibit an overall trend of Na(+) > K(+) > NH(4)(+) and correlate with the different cation positions and N2-H2...N7 H-bond lengths in the respective structures. A global weakening of the (h2)J(N2N7) couplings with increasing temperature for the three DNA quadruplex species is accompanied by a global increase of the acceptor (15)N7 chemical shifts. Above 35 degrees C, spectral heterogeneity indicates thermal denaturation for the Na(+)-bound form, whereas spectral homogeneity persists up to 55 degrees C for the K(+)- and NH(4)(+)-coordinated forms. The average relative change of the (h2)J(N2N7) couplings amounts to approximately 0.8 x 10(-3)/K and is thus considerably smaller than respective values reported for nucleic acid duplexes. The significantly higher thermal stability of H-bond geometries in the DNA quadruplexes can be rationalized by their cation coordination of the G-quartets and the extensive H-bond network between the four strands. A detailed analysis of individual (h2)J(N2N7) couplings reveals that the 5' strand end, comprising base pairs G1-G9* and G4*-G1, is the most thermolabile region of the DNA quadruplex in all three cation-bound forms.  相似文献   

19.
Schaniel D  Woike T  Delley B  Schefer J  Imlau M 《The Journal of chemical physics》2005,123(4):047101; author reply 047102
We discuss the computational results of the "Theoretical study of the photoinduced transfer among the ground state and two metastable states in [Fe(CN)5NO]2-" [J. Chem. Phys. 122, 074314 (2005)] with respect to our previously reported polarized absorption study on the metastable states SI and SII in Na2[Fe(CN)5NO]2H2O [D. Schaniel, J. Schefer, B. Delley, M. Imlau, and Th. Woike, Phys. Rev. B 66, 085103 (2002)].  相似文献   

20.
Noncovalent cation-pi interactions are important in a variety of supramolecular and biochemical systems. We present a 23Na solid-state nuclear magnetic resonance (SSNMR) study of two sodium lariat ether complexes, 1 and 2, in which a sodium cation interacts with an indolyl group that models the side chain of tryptophan. Sodium-23 SSNMR spectra of magic-angle spinning (MAS) and stationary powdered samples have been acquired at three magnetic field strengths (9.4, 11.75, 21.1 T) and analyzed to provide key information on the sodium electric field gradient and chemical shift (CS) tensors which are representative of the cation-pi binding environment. Triple-quantum MAS NMR spectra acquired at 21.1 T clearly reveal two crystallographically distinct sites in both 1 and 2. The quadrupolar coupling constants, CQ(23Na), range from 2.92 +/- 0.05 MHz for site A of 1 to 3.33 +/- 0.05 MHz for site B of 2; these values are somewhat larger than those reported previously by Wong et al. (Wong, A.; Whitehead, R. D.; Gan, Z.; Wu, G. J. Phys. Chem. A 2004, 108, 10551) for NaBPh4, but very similar to the values obtained for sodium metallocenes by Willans and Schurko (Willans, M. J.; Schurko, R. W. J. Phys. Chem. B 2003, 107, 5144). We conclude from the 21.1 T data that the spans of the sodium CS tensors are less than 20 ppm for 1 and 2 and that the largest components of the EFG and CS tensors are non-coincident. Quantum chemical calculations of the NMR parameters substantiate the experimental findings and provide additional insight into the dependence of CQ(23Na) on the proximity of the indole ring to Na+. Taken together, this work has provided novel information on the NMR interaction tensors characteristic of a sodium cation interacting with a biologically important arene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号