首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study localization and wave trapping in disordered, nonlinear dynamical systems. For some models of classical, disordered anharmonic crystal lattices, we prove that, with large probability, there are quasiperiodic lattice vibrations of finite total energy which lie on some infinite-dimensional, compact invariant tori in phase space. Such vibrations remain localized, for all times, and there is no transport of energy through the lattice. Our general concepts and techniques extend to other systems, such as disordered, nonlinear Schrödinger equations, or randomly coupled rotors.  相似文献   

2.
Within a tight-binding Hamiltonian approach, we study the dynamics of one-electron wave packets in a twisted ladder geometry with adiabatic electron-phonon interaction. The electron-phonon coupling is taken into account in the time-dependent Schrödinger equation through a cubic nonlinearity. This physical scenario incorporates several relevant ingredients to study the electronic wave packet dynamics in DNA-like segments. In the absence of nonlinearity, a random sequence of nucleotides pairs makes the wave packets remain localized, according to the standard picture of the Anderson localization. However, when the electron-phonon interaction is turned on, Anderson localization is suppressed and a subdiffusive regime takes place. Further, we show that the wave packet trapping can be controlled by an external field perpendicular to the helicity axis of the double-strand chain.  相似文献   

3.
We analyze mechanisms and regimes of wave packet spreading in nonlinear disordered media. We discuss resonance probabilities, and predict a dynamical crossover from strong to weak chaos. The crossover is controlled by the ratio of nonlinear frequency shifts and the average eigenvalue spacing of eigenstates of the linear equations within one localization volume. We consider generalized models in higher lattice dimensions and obtain critical values for the nonlinearity power, the dimension, and norm density, which influence possible dynamical outcomes in a qualitative way.  相似文献   

4.
We uncover the field-theoretical origin of symmetry relations for multifractal spectra at Anderson transitions and at critical points of other disordered systems. We show that such relations follow from the conformal invariance of the critical theory, which implies their general character. We also demonstrate that for the Anderson localization problem the entire probability distribution for the local density of states possesses a symmetry arising from the invariance of correlation functions of the underlying nonlinear σ model with respect to the Weyl group of the target space of the model.  相似文献   

5.
We study numerically the spreading of an initially localized wave packet in a one-dimensional discrete nonlinear Schr?dinger lattice with disorder. We demonstrate that above a certain critical strength of nonlinearity the Anderson localization is destroyed and an unlimited subdiffusive spreading of the field along the lattice occurs. The second moment grows with time proportional, variant t alpha, with the exponent alpha being in the range 0.3-0.4. For small nonlinearities the distribution remains localized in a way similar to the linear case.  相似文献   

6.
We experimentally investigate the evolution of linear and nonlinear waves in a realization of the Anderson model using disordered one-dimensional waveguide lattices. Two types of localized eigenmodes, flat-phased and staggered, are directly measured. Nonlinear perturbations enhance localization in one type and induce delocalization in the other. In a complementary approach, we study the evolution on short time scales of delta-like wave packets in the presence of disorder. A transition from ballistic wave packet expansion to exponential (Anderson) localization is observed. We also find an intermediate regime in which the ballistic and localized components coexist while diffusive dynamics is absent. Evidence is found for a faster transition into localization under nonlinear conditions.  相似文献   

7.
Anderson localization is a famous wave phenomenon that describes the absence of diffusion of waves in a disordered medium. Here we generalize the landscape theory of Anderson localization to general elliptic operators and complex boundary conditions using a probabilistic approach, and further investigate some mathematical aspects of Anderson localization that are rarely discussed before. First, we observe that under the Neumann boundary condition, the low energy quantum states are localized on the boundary of the domain with high probability. We provide a detailed explanation of this phenomenon using the concept of extended subregions and obtain an analytical expression of this probability in the one-dimensional case. Second, we find that the quantum states may be localized in multiple different subregions with high probability in the one-dimensional case and we derive an explicit expression of this probability for various boundary conditions. Finally, we examine a bifurcation phenomenon of the localization subregion as the strength of disorder varies. The critical threshold of bifurcation is analytically computed based on a toy model and the dependence of the critical threshold on model parameters is analyzed.  相似文献   

8.
We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear Schr?dinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial conditions such that the second moment of the norm and energy density distributions diverges with time. We find that the participation number of a wave packet does not diverge simultaneously. We prove this result analytically for norm-conserving models and strong enough nonlinearity. After long times we find a distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic dynamics. Assuming this result holds for any initially localized wave packet, we rule out the possibility of slow energy diffusion. The dynamical state could approach a quasiperiodic solution (Kolmogorov-Arnold-Moser torus) in the long time limit.  相似文献   

9.
In this work, we investigate the competition of disorder, nonlinearity and non-adiabatic process on the wave packet dynamics in 1D. We follow the time evolution of the second moment of the wave packet distribution to characterize its spreading behavior. In order to describe the dynamical behavior of one-electron wave packets, we solve a discrete nonlinear Schr?dinger equation which effectively takes into account a diagonal disorder and a nonlinear contribution. Going beyond the adiabatic regime, we consider that the nonlinearity relaxes in time according to a Debye-like law. In the adiabatic regime, it has been recently demonstrated that the interplay of disorder and nonlinearity leads to a sub-diffusive spread of the wave packet. Here, we numerically demonstrate that no sub-diffusive spreading of the second moment of the wave packet distribution takes place when the finite response time of the nonlinearity is taken into account.  相似文献   

10.
We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity κ(T). We find indications for an asymptotic low-temperature κT 4 and intermediate temperature κT 2 laws. These findings are in accord with theoretical studies of wave packet spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).  相似文献   

11.
We study the current relaxation of a wave packet in a nonlinear random sample coupled to the continuum and show that the survival probability decays as P(t) approximately 1/t(alpha). For intermediate times tt(*) and chi>chi(cr) we find a universal decay with alpha=2/3 which is a signature of the nonlinearity-induced delocalization. Experimental evidence should be observable in coupled nonlinear optical waveguides.  相似文献   

12.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

13.
We investigate theoretically the nature of the states and the localization properties in a one-dimensional Anderson model with long-range correlated disorder and weak nonlinearity. Using the stationary discrete nonlinear Schrödinger equation, we calculate the disorder-averaged logarithm of the transmittance and the localization length in the fixed input case in a numerically exact manner. Unlike in many previous studies, we strictly fix the intensity of the incident wave and calculate the localization length as a function of other parameters. We also calculate the wave functions in a given disorder configuration. In the linear case, flat phased localized states appear near the bottom of the band and staggered localized states appear near the top of the band, while a continuum of extended states appears near the band center. We find that the focusing Kerr-type nonlinearity enhances the Anderson localization of flat phased states and suppresses that of staggered states. We observe that there exists a perfect symmetry relationship for the localization length between focusing and defocusing nonlinearities. Above a critical value of the strength of nonlinearity, delocalization due to the long-range correlations of disorder is destroyed and all states become localized.  相似文献   

14.
We study effects of weak nonlinearity on localization of waves in disordered Stark ladder corresponding to propagation in presence of disorder and a static field. Our numerical results show that nonlinearity leads to delocalization with subdiffusive spreading along the ladder. The exponent of spreading remains close to its value in absence of the static field. The delocalization implies the existence of statistical entanglement between far away parts of the spreading wave packet indicating importance of long-range effects.  相似文献   

15.
The effect of Kerr nonlinearity dispersion on the envelope duration and the velocity of the envelope maximum for a wave packet propagating in an optical fiber and formed by two coupled copropagating waves is studied. The critical (threshold) energy of wave packet collapse can substantially be diminished and the supraluminal mode of propagation of the pulse envelope maximum in a nonamplifying medium can be realized owing to a significantly higher nonlinearity dispersion in such systems in comparison with “single-wave” ones.  相似文献   

16.
Adam Sokolow 《Annals of Physics》2007,322(9):2104-2113
An energy pulse refers to a spatially compact energy bundle. In nonlinear pulse propagation, the nonlinearity of the relevant dynamical equations could lead to pulse propagation that is nondispersive or weakly dispersive in space and time. Nonlinear pulse propagation through layered media with widely varying pulse transmission properties is not wave-like and a problem of broad interest in many areas such as optics, geophysics, atmospheric physics and ocean sciences. We study nonlinear pulse propagation through a semi-infinite sequence of layers where the layers can have arbitrary energy transmission properties. By assuming that the layers are rigid, we are able to develop exact expressions for the backscattered energy received at the surface layer. The present study is likely to be relevant in the context of energy transport through soil and similar complex media. Our study reveals a surprising connection between the problem of pulse propagation and the number patterns in the well known Pascal’s and Catalan’s triangles and hence provides an analytic benchmark in a challenging problem of broad interest. We close with comments on the relationship between this study and the vast body of literature on the problem of wave localization in disordered systems.  相似文献   

17.
We investigate the existence and stability of different families of spatial solitons in optical waveguide arrays whose amplitudes obey a disordered distribution. The competition between focusing nonlinearity and linearly disordered refractive index modulation results in the formation of spatial localized nonlinear states. Solitons originating from Anderson modes with few nodes are robust during propagation. While multi-peaked solitons with in-phase neighboring components are completely unstable, multipole-mode solitons whose neighboring components are out-of-phase can propagate stably in wide parameter regions provided that their power exceeds a critical value. Our findings, thus, provide the first example of stable higher-order nonlinear states in disordered systems.  相似文献   

18.
 从椭圆偏振激光场波包所满足的非线性控制方程出发,利用场论方法,构造该非线性方程的拉格朗日密度函数,得到激光场波包的能量集中具有准粒子特性,并给出守恒的粒子数、动量和能量。讨论了调制不稳定发展后期的波包坍塌动力学问题,利用归一化的粒子数密度分布作为权重,分析了激光场的波包。结果表明,激光场波包的尺度在有限的时间进程中,将塌缩到一个很小的值,证明了激光场具有塌缩行径。  相似文献   

19.
We study the influence of nonlinearity on wave localization in one-dimensional random media. Using a discrete nonlinear Schrödinger equation with a random on-site energy term, we calculate the localization length in a numerically exact manner. Unlike in many previous works, we fix the intensity of the incident wave and calculate quantities as a function of other parameters. We find that localization is enhanced due to nonlinearity for the focusing and defocusing nonlinearities. For small nonlinearity, the localization length is a decreasing function of nonlinearity. For sufficiently large nonlinearity, however, the localization length is found to approach a saturation value.  相似文献   

20.
We show that time- and phase-resolved two-color nonlinear wave packet interferometry can be used to reconstruct the probability amplitude of an optically prepared molecular wave packet without prior knowledge of the underlying potential surface. We analyze state reconstruction in pure- and mixed-state model systems excited by shaped laser pulses and propose nonlinear wave packet interferometry as a tool for identifying optimized wave packets in coherent control experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号