首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
The synthesis and characterization (elemental analysis, 1H and 13C NMR spectroscopy and single crystal X-ray diffraction) of the first ortho-metallated Pd(II) complexes containing N-benzoyl thiourea ligands are described. Four of these compounds showed liquid crystal properties which were investigated by mean of DSC and polarised light microscopy and their mesogenic properties are compared to those of ortho-metallated imine Pd(II) complexes with other types of co-ligands.  相似文献   

2.
A series of ortho-metallated palladium(II) complexes with two dimeric liquid crystals Schiff base (methoxy and decyloxy as terminal groups) as cyclometallated ligands and N-aryl-N′-benzoyl thiourea derivatives as co-ligands were prepared and investigated for their liquid crystalline properties. Their structures were assigned based on elemental analysis, FT-IR and 1H NMR spectroscopy while the thermal behaviour was investigated by differential scanning calorimetry and polarising optical microscopy. The complexes with Schiff base ligand bearing methoxy group as terminal group show extensive decomposition during melting while the complexes with Schiff base having decyloxy group as terminal group show monotropic nematic phases, with the mesophase stability strongly related to the type of N-aryl-N′-benzoyl thiourea derivative used. Their liquid crystalline properties are compared with their analogues having N,N-dialkyl-N′-benzoyl thiourea as co-ligands which were reported previously. One of the latter complexes was also investigated by thermally stimulated depolarisation currents method while the optical transmission was recorded simultaneously. The thermally stimulated depolarisation currents and optical transmission spectra confirmed the previous observation regarding the phase transition temperatures. The current intensity–applied voltage dependencies of this complex were investigated by specific electrical measurements.  相似文献   

3.
Binuclear chloro-bridged cyclopalladated azobenzenes [Pd(A)Cl]2 (A = ortho-metallated azobenzene or its derivatives) have been reacted with aqueous AgNO3 to yield aquo-derivatives followed by the addition of xanthates, or dithiocarbamates (RCS2 ) to synthesise ternary complexes, [Pd(A)(RCS2)]. These complexes occur as configurational isomers and their compositions have been established by 1H-n.m.r. spectroscopy. Cyclic voltammetric studies show azo reduction at negative and thiol oxidation at positive potentials relative to s.c.e., respectively. Dissociation of RCS2 under the electrode field is chemically supported by using a sulfide extractor, HgCl2, Hg(OAc)2, or AgOAc, to precipitate out the binuclear [Pd(A)Cl]2/[Pd(A)(OAc)]2 complexes.  相似文献   

4.
Summary The carbonyl ligands in the Rh1 complexes Rh(L-L)(CO)2 [L-L=anthranilate (AA) orN-phenylanthranilate(FA) ions] are replaced by P(OPh)3 to form the mono-or disubstituted products, Rh(L-L)(CO)[P(OPh)3] and Rh(L-L)[P(OPh)3]2 respectively depending on the [P(OPh)3]/[Rh] molar ratio, at room temperature and in air. Under argon at [P(OPh)3]/[Rh]4 theortho-metallated Rh1 complex Rh[P(OPh)3]3[P(OC6H4)-OPh)2] is formed. The new route forortho-metallated Rh1 complex synthesis is described.The Rh(AA)(CO)2 complex was used as a catalyst precursor in hydroformylation of olefins.  相似文献   

5.
The study of the electrode reactions of palladium(II) at non-modified carbon paste electrodes (CPEs) in chloride solution has revealed the existence of a chloropalladate(II) complex at the electrode surface. The complex is formed during the application of anodic potentials after preceding palladium deposition. In the present paper the electrode reactions of PdII at CPEs modified with some N′,N′-disubstituted derivatives of N-benzoylthiourea [as selective ligands for palladium(II)] are studied in chloride solution by cyclic voltammetry. Two reduction peaks are observed in the cathodic scans recorded after deposition of palladium and anodization of the electrode. From the results it is concluded that [in addition to the chloropalladate(II) complex, observed at the non-modified electrode] a second palladium complex is formed at positive potentials. The formation of the palladium(II) complex of the N-benzoylthiourea derivatives by ligand exchange at the electrode surface is assumed. The ligand exchange itself occurs without charge transfer across the electrode|solution interface; therefore, it cannot be detected electrochemically. After palladium deposition and anodic treatment a pronounced "inverse" peak (i.e., an anodic peak in the cathodic scan) with peak currents up to 100 μA is observed at about +0.8 V. Its peak current increases with the amount of deposited palladium and the number of cycles. The reactions at the electrode surface are discussed. The results of the study reveal the existence of two different surface complexes of palladium(II) at ligand-modified CPEs, but the surface reactions could not be elucidated in detail. Electronic Publication  相似文献   

6.
The cyclopalladation of 1,1′-azonaphthalene (= di(naphthalen-1-yl)diazene; 2 ) with bis(hexafluoroacetyl-acetonato)palladium(II) (3; [Pd(hfa)2]) yields the ortho-palladated complex (1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O′)[1-(naphthalen-1-ylazo-κN2)naphthalen-2-yl-κC2]palladium(II) ( 4 ) as well as the peri-palladated complex (1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O′)[8-(naphthalen-1-ylazo-κN2)naphthalen-1-yl-κC1]-palladium(II) ( 5 ); their structures were corroborated by X-ray analyses. The formation of the novel peri-metallated product 5 containing a six-membered palladacycle strongly depends upon the reaction conditions.  相似文献   

7.
Palladium(II) and platinum(II) complexes containing mixed ligands N-(2-pyridyl)acetamide (AH) or N-(2-pyrimidyl)acetamide (BH) and the diphosphines Ph2P(CH2) n PPh2, (n = 1, 2 or 3) have been prepared. The prepared complexes [Pd(A)2(diphos)] or [Pd(B)2(diphos)] have been used effectively to prepare bimetallic complexes of the type [(diphos)Pd(μ-L)2M′Cl2] where M′ = Co, Cu, Mn, Ni, Pd, Pt or SnCl2; L = A or B. The prepared complexes were characterized by elemental analysis magnetic susceptibility, i.r. and UV–Vis spectral data. 31P–{1H}-n.m.r. data have been applied to characterize the produced linkage isomers.  相似文献   

8.
Synthesis, characterization, microbiological activity and electrochemical properties of the Schiff-base ligands A1–A5 and their Cd(II) and Cu(II) metal complexes are reported. The ligands and their complexes have been characterized by elemental analysis, FT–IR, UV–Vis, 1H- and 13C-NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands are bidentate, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff-base ligands A1–A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the chosen strains include Bacillus megaterium and Candida tropicalis. The electrochemical properties of the ligands A1–A5 and their Cu(II) metal complexes have been investigated at different scan rates (100–500?mV?s?1) in DMSO.  相似文献   

9.
Complexes [Pt(2Bz4oT)Cl], [Pt(2Bz4mT)Cl], and [Pt(2Bz4pT)Cl] were prepared with N(4)-ortho-(H2Bz4oT), N(4)-meta-(H2Bz4mT), and N(4)-para-(H2Bz4pT) tolyl-2-benzoylpyridine-derived thiosemicarbazones. The thiosemicarbazones exhibited moderate anti-proliferative activity against HepG2 (hepatoma) and UACC-62 (melanoma) cancer cell lines, but showed high anti-proliferative effect against A431 (epithelial carcinoma) cancer cell lines. Upon coordination to platinum(II) the anti-proliferative activity decreases in all cases. The cytotoxicity of the previously prepared palladium(II) analogues [Pd(2Bz4oT)Cl], [Pd(2Bz4mT)Cl], and [Pd(2Bz4pT)Cl] was also investigated. As in the case of the platinum(II) complexes, coordination to palladium(II) did not lead to activity improvement. Investigations on the mechanism of cytotoxic action against A431 cells revealed that [Pd(2Bz4oT)Cl] induced DNA fragmentation and apoptosis while H2Bz4oT did not present this effect. The high anti-proliferative effect of the thiosemicarbazones and [Pd(2Bz4oT)Cl] against A431 cells, together with the pro-apoptotic effect of [Pd(2Bz4oT)Cl] suggests that these compounds have potential as chemotherapeutic drug candidates.  相似文献   

10.
Reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with NH2(CH2)nNH2 (n = 3, 2) leads to the N-phosphorylated bis-thioureas [(iPrO)2C(S)NHP(O) NH]2Z (Z = —(CH2)3—, H2LI ; —(CH2)2—, H2LII ). Reaction of the potassium salt of H2LI with Co(II) and Zn(II) in aqueous EtOH leads to complexes of formula M2(L-O,S)2. The metal cation in both complexes is coordinated by two deprotonated ligands through the sulfur atoms of the thiocarbonyl groups and the oxygen atoms of the phosphoryl groups. Reaction of K2LI with Ni(II) and Pd(II) in the same conditions leads to M2(L-N,S)2 complexes. In both compounds, the metal center is found in a square-planar N2S2 environment formed by the C=S sulfur atoms and the P—N nitrogen atoms of two deprotonated ligands LI . Reaction of H2LII with KOH leads to a product of heterocyclization, in which one of the thiourea fragments is retained. Compounds obtained were investigated by IR, UV-Vis, 1H and 31P NMR spectroscopy, and microanalysis.  相似文献   

11.
Summary When platinum(II) chloride dissolved in acetic acid containing concentrated hydrochloric acid was refluxed withN-phenylpyrazole(liphpz) andN-(p-tolyl)pyrazole (Htlpz), complexes of composition [Pt(N-C)Cl]2 (N-C = phpz, tlpz) were obtained, in which phpz and tlpz are coordinated through nitrogen and carbon forming a five membered metallocycle. Similar palladium(II) complexes [Pd(N-C)Cl]2 were easily prepared by the reaction of palladium(II) chloride with Hphpz and Htlpz in methanol in the presence of lithium chloride. These [M(N-C)CI]2 complexes reacted with tri-n-butylphosphine (PBu3) and pyridine (py) to give the adducts [M(N-C)ClL](L = PBu3, py). Ethylenediamine(en) and acetylacetone(Hacac) gave IPd(phpz)(en)]Cl and [Pd(phpz)(acac)] respectively. These new complexes are characterized by means of1H-n.m.r. and i.r. spectra, and probable structures are proposed.Reprints of this article are not available.  相似文献   

12.
Potassium N-R-sulfonyldithiocarbimates, K2(RSO2N=CS2) (R = Me, Ph, 2-MeC6H4), react with Pd(OAc)2 to yield complex anions bis(N-R-sulfonyldithiocarbimato)palladate(II), [Pd(RSO2N=CS2)2]2–, which were isolated as their n-Bu4N+ salts. When the reaction was performed in the presence of Ph3P in a 2:1 ratio with respect to Pd(OAc)2, the N-R-sulfonyldithiocarbimatobis(triphenylphosphine)palladium(II) complexes were obtained. Elemental analyses, i.r. spectra and electronic spectra data were consistent with the formation of palladium–sulfur diamagnetic square planar complexes in the first case and mixed square planar complexes of palladium with Ph3P and dithiocarbimates in the second case. The 1H-n.m.r., 13C-n.m.r. and 31P-n.m.r. spectra showed the expected signals for the Bu4N+ cation, Ph3P and the dithiocarbimate moieties.  相似文献   

13.
Two carboxamide ligands, H2bqbenzo {3,4-bis(2-quinolinecarboxamido)benzophenone} and H2bqb {N,N′-bis[(2-quinolinecarboxamide)-1,2-benzene]}, have been prepared using tetrabutylammonium bromide as an environmentally benign reaction medium. Two new Pd(II) complexes, [PdII(bqbenzo)] (1) and [PdII(bqb)] (2), have been synthesized, characterized, and their structures determined by single crystal X-ray diffraction. The di-anionic ligands, bqbenzo2? and bqb2?, are coordinated via two Namide atoms and the nitrogens of the two quinoline rings, with Pd?Namide < Pd–Nquinoline bond lengths. The geometry around palladium(II) in both complexes is distorted square planar. The electrochemical behaviors of the ligands and their Pd(II) complexes have been investigated by cyclic voltammetry in DMF. An irreversible PdII/I reduction is observed at ?1.06 V for 1 and at ?1.177 V for 2, indicating the influence of the R substituent on the central phenyl ring of carboxamide ligands on the PdII/I reduction potential. The ligands and palladium complexes were also screened for in vitro antibacterial activity. The Pd(II) complexes show strong biological activity against S.typhi and E.coli as Gram ?ve and B.cereus and S.aureus as Gram +ve bacteria comparable to the antibiotic penicillin. The antibacterial results also reveal that coordination of Pd(II) significantly improves the activity.  相似文献   

14.
N,N-Dimethylaminoalkyl chalcogenolate Pd(II) complexes [PdCl(ENMe2)]n has been investigated as a moisture/air-stable and robust catalyst for Sonogashira cross-coupling reaction in the absence of copper and phosphine ligand. The dimeric palladium(II) complex of selenium containing ligand shows the best catalytic activity as compared with monomeric and trimeric complexes. The variety of functional groups are tolerated under optimized catalytic systems and provide excellent yields of the products.  相似文献   

15.
Ionic [Pd(LH)2(ClO4)2], neutral (PdL2) complexes of Pd(II) with hetarylamines derived fromdipyridylamine and benz[c,d]indolylamine were synthesized. The 1H NMR, IR, and UV spectra of the products were studied. Irradiation of neutral Pd(II) complexes with N-derivatives of benz[c,d]indolylamine results in ligand elimination. Photolysis of a neutral Pd(II) complex with 3,5-dichloro-2,2'-dipyridylamine in solution results in ligand cyclization to give 8-chlorodipyrido[1,2-a:2',3'-d]imidazole.  相似文献   

16.
New bis[N-(2,6-di-t-butyl-1-hydroxyphenyl)salicylideneminato]palladium(II) [Pd(L x )2] complexes bearing HO and MeO substituents on the salicyaldehyde moiety were prepared, and their spectroscopic properties, as well as redox reactivity towards PbO2 and PPh3, examined by e.s.r. and u.v. spectroscopy. The complexes display charge-transfer bands in the 670–692 nm range in polar solvents, which are assigned to the d(Pd) * (chelated quinoid) transition. One-electron oxidation of Pd(L x )2 produces PdII-stabilized radicals in which the unpaired electrons are localized on the phenoxy fragments and do not couple with the two radical centers. The complexes are easily reduced with PPh3 via intramolecular electron-transfer from ligand to metal to give various radical intermediates and Pd. All detected radical species have been characterized by e.s.r. spectroscopy.  相似文献   

17.
A new heterocyclic compound N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-oxalamic acid has been synthesized from N-amino pyrimidine-2-one and oxalylchloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, AAS, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and thermogravimetric analyses. An octahedral geometry has been suggested for all the complexes, except for Pd(II) complex, in which the metal center is square planar. Each ligand binds using C(2)=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes are also discussed. The new synthesized compounds were evaluated for antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi using the microdilution procedure. The Cu(II) complex displayed selective and effective antibacterial activity against one Gram-positive spore-forming bacterium (Bacillus cereus ATCC 7064), two Gram-positive bacteria (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) at 40–80 µg mL?1, but poor activity against Candida species. The Cu(II) complex might be a new antibacterial agent against Gram-positive bacteria.  相似文献   

18.
Summary Two types of the CoII complexes L1Co (H2L1=N,N-ethylenebis(isonitrosoacetylacetoneimine) were prepared. In type (a) the chelate rings are five-membered whereas in type (b) they are six-membered. The type (b) complexes were converted to type (a) in refluxing solutions. Half-ionization of the ligand is observed in the complexes HL1 Co(O2CMe) and HL1MnCl, where the chelate rings are five- and six-membered respectively. The octahedral complex L1FeCl·H2O has chelate rings of type (a) as does the complex L2Co (H2L2=unsymmetric Schiff baseN,N-ethylene(isonitrosoacetylacetoneimineacetylacetoneimine). Twocis complexes (La 2Lb 3)Pd and (La 3)2Pd are characterized (HL3=isonitrosoacetylacetoneimine, (a) and (b) denote the type of chelate ring). Structures for the metal complexes and the sizes of the chelate rings are suggested on the basis of analytical and spectral evidence.  相似文献   

19.
Summary Platinum(II) and palladium(II) chloride complexes with purine, pyrimidine (pyrimid),N-ethylimidazole(N-EtIm) andN-propylimidazole(N-PropIm) ligands have been prepared and characterized by analysis and spectroscopic methods. The compounds have general formula M(L1)(L2)Cl2 where M=PtII, PdII; L1=purine or pyrimid, L2=N-EtIm orN-PropIm, except the complexes Pt(purine)(pyrimid)Cl2 and [Pd(purine)(pyrimid)2Cl]Cl and [Pt(purine)2 (N-propIm)Cl]Cl·2H2O.  相似文献   

20.
A symmetrical tetradentate Schiff base ligand was derived by the condensation of ortho‐vanillin and thiourea in 2:1 molar ratio and adjusted pH. Nickel and vanadyl complexes were obtained using the template method by the reaction of ortho‐vanillin and thiourea with Ni(OAc)2. 4H2O and VO(acac)2 (2:1:1 molar ratio) in absolute ethanol and adjusted pH. The Schiff base ligand and its complexes have been characterized by FT‐IR, 1H NMR, UV/Vis, elemental analysis and conductometry measurements. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metal to ligand stoichiometry and the molar conductance data revealed that the metal complexes were non‐electrolytes. The nickel and vanadyl complexes exhibited tetrahedral and square pyramidal coordination geometry, respectively. The emission spectra of the ligand and its complexes were studied in DMSO. Electrochemical properties of the ligand and its complexes were also investigated in the DMF solvent at the 150 mVs‐1 scan rate. The ligand and its complexes showed irreversible processes at this scan rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号