首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A series of new chiral side-chain liquid crystalline polymers (P1–P7) have been synthesized with poly(methylhydrogeno)siloxane, two chiral liquid crystalline monomers, cholesteryl-4-allyloxybenzoate (M1) and cholesteryl 4-(10-undecylen-1-yloxy) benzoate (M2), and a nematic liquid crystalline monomer, 4-(trifluoromethyl)phenyl 4-(undec-10-enoyloxy)benzoate (M3). The chemical structures and liquid crystalline properties of the synthesized polymers have been investigated by FTIR, 1H-NMR, differential scanning calorimetry (DSC), polarizing optical microscopy (POM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). All chiral polymers show wide mesophase temperature ranges and a high thermal stability with decomposition temperatures (T d) at 5 % weight loss greater than 300 °C. P1–P4 display a single cholesteric phase, but P5–P7 containing more fluorinated units show a smectic A (SA) phase besides a cholesteric phase. The optical properties of the polymers have been characterized by circular polarization spectra and optical rotation analysis. The cholesteric polymers P3 and P4 exhibit different colors at room temperature, and the color can remain over 24 months. The maximum reflection bands of polymers P1–P4 shift to long wavelength with increasing the content of M3 in the polymer systems. For P5–P7, the reflection wavelengths change sharply around the temperature of the SA–Ch phase transition. The specific rotation value of P2 smoothly decreases from ?8.2° to ?0.29° when it is heated, but the specific rotation value of polymer P7 changes from negative value to positive value on heating cycle. The optical properties of the polymers offer tremendous potential for various optical applications.  相似文献   

2.
A series of liquid crystalline (LC) polysiloxanes containing diosgeninyl and menthyl groups (from monomers M 1 and M 2, respectively) were synthesized. The chemical structures of the monomers and polymers obtained were confirmed by elemental analysis, Fourier transform infrared spectroscopy, proton NMR and carbon‐13 NMR. The LC properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. Monomer M 1 showed cholesteric oily‐streak and spiral textures. Copolymers P 2P 5 exhibited cholesteric phases. With increasing concentration of M 2 units, the glass transition and clearing temperatures decreased. Experimental results demonstrated that a flexible polymer backbone and a long flexible spacer tended to favour a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

3.
The synthesis is described of four new chiral liquid crystalline monomers (M2–M5 ) and their corresponding side‐chain homopolysiloxanes (P2–P5 ) containing menthyl groups. Chemical structures were characterised using FT‐IR or 1H NMR spectra, and specific optical rotations were evaluated with a polarimeter. The phase behaviour and mesomorphic properties of the new compounds were investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy, UV/visible/NIR spectrocopy and X‐ray diffraction. The monomers and homopolymers with more aryl segments showed noticeably lower specific optical rotation value. The monomers M2–M5 formed a cholesteric or blue phase when a flexible spacer was inserted between the rigid mesogenic core and the terminal menthyl groups by reducing the steric effect. M2–M5 revealed enantiotropic cholesteric phase. Moreover, M2 also exhibited a monotropic smectic A (SmA) phase, and M4 also exhibited a cubic blue phase on cooling. The selective reflection of light shifted to the long wavelength region with increasing rigidity of the mesogenic core for M2–M5 . P2–P5 exhibited SmA phases, and the mesogenic moieties were ordered in smectic orientation with their centres of gravity in planes. Melting or glass transition temperature and the clearing temperature increased, and the mesophase temperature range widened with increasing rigidity of the mesogenic core.  相似文献   

4.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

5.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

6.
A series of new cholesteric side-chain liquid crystalline polymers were prepared containing cholesteric monomer and nonmesogenic chiral monomer. All polymers were synthesized by graft polymerization using polymethylhydrosiloxane as backbone. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction measurements, and temperature-changing solidistic optical rotation. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared and proton nuclear magnetic resonance spectra. M1 showed cholesteric phase during the heating and the cooling cycle. Polymer P1 were chiral smectic A phase, whereas P2–P7 were cholesteric phase. Experimental results demonstrated that nonmesogetic chiral moity offered the possibility of application because of its lower glass-transition temperature, and the glass-transition temperatures and isotropization temperatures reduced, and the ranges of the mesophase temperature changed abruptly at first and then smoothly with increasing the content of chiral agent.  相似文献   

7.
To study structure–mesomorphism relationships of the monomers and polymers based on menthol, four new chiral monomers ( M1 – M4 ) and the corresponding homopolymers ( P1 – P4 ) with menthyl group were synthesized. Their chemical structures, formula, phase behavior, and thermal stability were characterized by FTIR, 1H NMR, 13C NMR, elemental analyses, differential scanning calorimetry, polarizing optical microscopy, X‐ray diffraction, and thermogravimetric analysis. The selective reflection of light was investigated with ultraviolet/visible spectrometer. The influence of the mesogenic core rigidity, spacer length, and menthyl steric effect on the mesomorphism of M1 – M4 and P1 – P4 was examined. By inserting a flexible spacer between the mesogenic core and the terminal menthyl groups, four target monomers and polymers could form the expected mesophase. Moreover, their melting temperature (Tm), glass transition temperature (Tg), clearing temperature (Ti), and mesophase range (ΔT) increased with increasing the mesogenic core rigidity; whereas the Tm and Tg decreased, Ti and ΔT increased with an increase of the spacer length. M1 and M2 showed monotropic and enantiotropic cholesteric phase, respectively, whereas M3 and M4 all revealed chiral smectic C (SmC*), cholesteric and cubic blue phases. In addition, with increasing temperature, the selective reflection of light shifted to the long wavelength region at the SmC* phase range and to the short wavelength region at the cholesteric range, respectively. P1 and P2 only showed a smectic A (SmA) phase, whereas P3 and P4 exhibited the SmC* and SmA phases. All the obtained polymers had very good thermal stability. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

8.
The synthesis of new chiral monomers (M1 ?M3 ) based on menthol and the corresponding polyacrylates (P1 ?P3 ) is described. The chemical structures, formula and phase behaviour of the obtained monomers and polymers were characterised with FT-IR, 1H-NMR, elemental analyses, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). The effect of the mesogenic core rigidity, spacer length and menthyl steric effect on the phase behaviour of M1 ?M3 and P1 ?P3 is discussed. The expected mesophase of the compounds based on menthol can be obtained by inserting a flexible spacer between the mesogenic core and the terminal groups. For the chiral monomers and polyacrylates, their corresponding melting temperature (T m), glass transition temperature (T g) and clearing temperature (T i) increased with an increase of the mesogenic core rigidity; while the T m, T g and T i decreased with increasing the spacer length. M1 and P1 showed no mesophase, while M2 and M3 all revealed a SmC* and cholesteric phases. P2 and P3 only showed a cholesteric phase.  相似文献   

9.
New cholesteric monomers (M2−M5) and the corresponding smectic homopolymers (P2−P5) based on menthyl groups were synthesized. The chemical structures were characterized by Fourier transform infrared and 1H NMR. The specific optical rotations were evaluated with a polarimeter. The structure–property relationships of the new compounds are discussed. The mesomorphism was investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. The selective reflection property of light was studied with UV/Visible/NIR. The monomers M2−M5 formed the cholesteric or blue phase when a flexible link chain was inserted between the mesogenic core and the terminal menthyl groups by reducing the steric effect. M1 showed no mesomorphism, while M2−M5 revealed enantiotropic cholesteric phase. In addition, M2 and M3 also showed a cubic blue phase on cooling. The selective reflection of light for M2−M5 shifted to the short reciprocal wavelength region with increasing the temperature or intramolecular spacer length. P2−P5 exhibited the smectic A phase. The melting, clearing, and glass transition temperatures increased when increasing the aryl number in the mesogenic core or decreasing the intramolecular spacer length.  相似文献   

10.
A series of side-chain cholesteric polysiloxanes (PQ) were synthesised with poly(methyl--hydrogeno)siloxane, cholesterol (4-allyoxybenzoate) (M1), and 4-hydroxyphenyl-4(allyloxy) phenylpropanoate (M2), 4-allyloxy-4 ‘-cyanobiphenyl (M3). Then azo-containing chiral liquid crystalline polymer (PZ) were synthesised with PQ and 4-(4-hexyloxyphenylazo) benzoic acid (M4) by esterifying catalysed by 4-dimethylaminopyridine which is a new synthetic way. The chemical structures of monomers and polymers were confirmed by conventional spectroscopic methods and test methods for liquid crystal properties. The photo-induced isomerisation of the polymer is investigated by UV–vis spectroscopy. Weight lost temperatures (5%) for all polymers were greater than 298°C. The results showed that the introducing of azo moieties makes the polymer more stable on thermo dynamics. The transition temperatures of the polymers PQ and PZ exhibited some regularity as the change of ingredients of polymers. PQ series showed Grandjean textures and PQ1–PQ5 exhibited blue selective reflection in the visible light region. PZ1–PZ5 also showed Grandjean textures and the texture colour of the polymer turned to red and colourful with green and blue due to increasing contents of azo moiety, and yellow selective reflection in the visible light region were observed. The molecular design introducing shorter and harder part into chiral polymerisation system is favourable to the appearance of selective reflection. All polymers turned out right-handed optical activity due to having the same cholesteric group, the photo-responsive behaviours of the PZ series were also investigated.  相似文献   

11.
In this work the new-style nematic monomer M1 , chiral crosslinking reagent MC and a series of new side-chain cholesteric liquid crystalline elastomers derived from M1 and MC were prepared. The effect of the content of the chiral crosslinking unit on phase behaviour of the elastomers has been discussed. Polymer P1 showed nematic phase, P2 P7 showed cholesteric phase, P3 formed Grandjean texture in the heating cycle and turned out a blue Grandjean texture in the cooling cycle, P2 P3 with less than 6 mol% of chiral crosslinking agent gave rise to selective reflection. The elastomers containing less than 15 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. Experimental results demonstrated that the glass transition temperatures reduced first and then increased, and the isotropisation temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking unit.  相似文献   

12.
The synthesis of five chiral liquid crystalline monomers (M1-M5), and their corresponding side-chain polymers (P1-P5) based on (S)-(+)-2-methyl-1-butanol derivatives is described. The chemical structures of the monomers were confirmed by FT-IR, 1H NMR, and elemental analyses. The structure-property relationships of the monomers and polymers obtained are discussed. The mesomorphic properties were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarizing optical microscopy (POM), and X-ray diffraction (XRD) measurements. All monomers showed a cholesteric phase. For M2, M3, and M5, besides a cholesteric phase and a smectic A (SA) phase, M2 also revealed an enantiotropic chiral smectic C phase and a monotropic smectic B (SB) phase, and M3 also showed a SB phase. The polymers P1-P5 exhibited a SA phase, moreover, P2, P3 and P5 also revealed a phase. The experimental results demonstrated that a flexible siloxane backbone and a long flexible spacer tended to exhibit a low glass transition temperature, high thermal stability, and wide mesophase temperature range.  相似文献   

13.
A series of new side chain cholesteric liquid crystalline elastomers (P-2–P-6) containing the nematic crosslinking monomer 4-(10-undecen-1-yloyloxy)benzoyl-4′-allyloxybenzoyl-p-benzenediol bisate (M-1) and the cholesteric monomer 4-cholesteryl 4-(10-undecen-1-yloyloxy)benzoate (M-2) were synthesized. The chemical structures of the monomers and elastomers obtained were confirmed by FTIR and 1H NMR spectroscopy. Their liquid crystalline properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The effect of the crosslinking units on phase behaviour is discussed. Elastomers containing less than 20?mol?% of the crosslinking units showed elasticity, reversible phase transitions and cholesteric Grandjean texture. The experimental results demonstrated that the glass transition and isotropization temperatures of P-2P-6 increased with the increasing concentration of crosslinking unit M-1.  相似文献   

14.
ABSTRACT

In this study, we designed, synthesised and characterised two series of cholesteric liquid crystal polymers, QP series and ZP series. With polymethylhydrosiloxane as the main chain, QP series were synthesised by copolymerisation between the monomer M1 containing a cholesteryl mesogenic unit and the monomer M2 with a hydroxyl. ZP series, meanwhile, were synthesised by esterification between QP series members and the monomer M3, a carboxylic acid with an azo mesogenic unit. We characterised chemical structures of all the monomers and polymers by FT-IR and 1H-NMR, which proved that the target monomers and polymers had been obtained. We observed dramatic colour changes after the introduction of monomer M3 and Grandjean textures from both QP series and ZP series using POM. In addition, strong selective reflection could be observed as well. Then, we characterised the thermal properties of polymers by DSC, TGA and XRD to explore their phase transition behaviours further. Their photoresponsive and photochromic properties were characterised by UV-Vis spectrum.  相似文献   

15.
A series of new chiral smectic liquid crystalline elastomers was prepared by graft polymerization of a nematic monomer with a chiral and non‐mesogenic crosslinking agent, using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H NMR. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. Monomer M 1 showed a nematic phase during heating and cooling. Polymer P 0 exhibited a smectic B phase; elastomers P 1P 3 showed the smectic A phase, P 4P 6 showed a chiral smectic C(SmC*), and P 7 displayed stress‐induced birefringence. Elastomers containing less than 15?mol?% M 2 displayed elasticity, reversible phase transitions with wide mesophase temperature ranges, and high thermal stability. With increasing content of the crosslinking unit, glass transition temperatures first increased, then fell, then increased again; isotropization temperatures and mesophase temperature ranges steadily decreased.  相似文献   

16.
New liquid crystalline monomer 4-(4-ethoxybenzoyloxy)biphenyl-4′-[(10-undecylen-1-yloxy)-4′-ethoxy]benzoate (M 1 ), chiral crosslinking agent isosorbide di-(10-undecylen-1-yloxybenzoate) (M 2 ), and the corresponding elastomers were prepared. The chemical structures of M 1 and M 2 were characterized by Fourier transform infrared and 1H-nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. M 1 exhibited typical threaded texture and droplet texture of nematic phase. The use of chiral crosslinking agent in the polymer networks could induce cholesteric phase. The elastomers containing less than 10 mol% of the chiral crosslinking units showed elasticity, reversible phase transition, wide mesophase temperature ranges, and high thermal stability. For the elastomers P 2 P 4 , the glass transition temperature (T g) increased; clearing temperature (T i) and mesophase temperature range (ΔT) decreased with increasing content of the crosslinking unit.  相似文献   

17.
A series of cyclosiloxane-based cholesteric liquid crystalline (LC) polymers were synthesized from a cholesteric LC monomer cholest-5-en-3-yl(3β) 4-(2-propenyloxy)benzoate and a nematic LC monomer butyl 4-[4-(2-propenyloxy)benzoxy]benzoate. All the polymers exhibit thermotropic LC properties and show cholesteric phases. Most of the polymers display four types of phase transition behaviour corresponding to glass transition, melting point, cholesteric phase-blue phase transition and clearing point. The mesophase temperature range of the blue phases are as broad as 20°C. The blue phase was confirmed by the apperance of planar textures and cubic packings. With an increase of non-chiral component in the polymers, the clearing point decreases slightly, while the glass transition and melting temperatures change little. In the reflection spectra of the polymer series the reflected wavelength broadens and shifts to longer wavelength with increase of the non-chiral component in the polymer systems, suggesting that the helical pitch P lengthens.  相似文献   

18.
New monomer cholesteryl 4-(10-undecylen-1-yloxybenzoyloxy)-4′-ethoxybenzoate (M1), crosslinking agent biphenyl 4,4′-bis(10-undecylen-1-yloxybenzoyloxy-p-ethoxybenzoate) (M2) and a series of side-chain cholesteric elastomers were prepared. The chemical structures of the monomers and elastomers obtained were confirmed by element analyses, FT-IR, and 1H NMR. The mesomorphic properties and thermal stability were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. M 1 showed cholesteric phase, and M 2 displayed nematic phase. The elastomers containing less than 12 mol% of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability.  相似文献   

19.
The synthesis of six liquid crystalline monomers M1-M6 and three series of side chain cholesteric liquid crystalline polymers P1-P3 is described. The chemical structures of the monomers were characterized by FTIR and 1H NMR spectroscopy. The structure-property relationships of M1-M6 and P1-P3 are discussed. Their phase behaviour and optical properties were investigated by differential scanning calorimetry and polarizing optical microscopy. The monomers M1-M3 exhibited cholesteric phases; M4-M6 showed nematic or smectic phases. The polymer series P1-P3 showed cholesteric phases. Experimental results demonstrated that the selective reflection of the cholesteric monomers and homopolymers shifted to the shorter wavelength region (blue shift) with increasing length of the flexible spacer. The selective reflection of the copolymers shifted to the longer wavelength region (red shift) with increasing content of nematic units.  相似文献   

20.
The synthesis of new chiral monomers (M1M5) and the corresponding smectic homopolymers (P1P5) containing menthyl groups is described. The chemical structures and purity were characterized by FT-IR, 1H NMR and elemental analyses. The specific optical rotations were evaluated with a polarimeter. The phase behavior and mesomorphism were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. The selective reflection property of light was studied with UV/visible/NIR. The monomers M2M5 formed a chiral smectic C , and cholesteric or blue phase when a flexible linkage chain was inserted between the mesogenic core and the terminal menthyl groups by reducing the steric effect. M1 showed no mesomorphism, while M2M5 showed enantiotropic and cholesteric phases. Moreover, M5 also exhibited a cubic blue phase on cooling. With increasing temperature, the selective reflection of light shifted to the long wavelength region at the phase range, and to the short wavelength region at the cholesteric phase range, respectively. The homopolymers P1P5 all exhibited the batonnet textures of a smectic A phase. The melting, clearing, and glass transition temperatures increased, and the mesophase temperature ranges widened with increasing the aryl number in the mesogenic core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号