首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel isosorbide derivative containing perfluorocarbon group,bi(perfluorooctanesulfonyl)isosorbide ester as chiral dopant in liquid crystal,was synthesized.Chemical structure was characterized by elemental analysis,FT-IR,1H NMR and 19F NMR.The optical texture of the mixture was observed by polarized optical microscopy(POM).Novel chiral dopant containing perfluorocarbon group had excellent optical activity.Its specific rotation and molar rotation were noticeable higher than those of bi(4-chloromethylbenzenecarbonic)isosorbide ester.The fluorocarbon group improved the molar rotation of chiral compound and did not affect optical rotation direction.The texture of the mixture added isosorbide derivative with fluorocarbon group showed the oily streak texture.  相似文献   

2.
Novel chiral molecules containing cationic groups, (N-[4-triethylammoniomethyl]-benzoyl ester)-ethyl lactate chloride and bi-(N-[4-triethylammoniomethyl]-benzoyl ester)-isosorbide chloride, were designed and synthesized. Chemical structures of the molecules were characterized by elemental analysis, FT-IR, and (1)H NMR. The photochemical properties of the chiral compounds and their textures in nematic liquid crystals (LCs) were investigated by optical rotation, circular dichroism (CD), and polarizing optical microscopy (POM). The novel chiral molecules exhibited good optical activity. The chiral compound based on a L-ethyl lactate chiral center had a left-handed configuration. The chiral compound based on an isosorbide chiral center had a right-handed configuration. The cationic polar groups did not affect the direction of optical rotation, but could effluence the molar rotation of chiral compounds. The mixtures with dopants showed oily streak textures. Doping of a nematic phase liquid crystal with the chiral molecules converted it to the cholesteric phase.  相似文献   

3.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

4.
A series of new chiral side-chain liquid crystalline polymers (P1–P7) have been synthesized with poly(methylhydrogeno)siloxane, two chiral liquid crystalline monomers, cholesteryl-4-allyloxybenzoate (M1) and cholesteryl 4-(10-undecylen-1-yloxy) benzoate (M2), and a nematic liquid crystalline monomer, 4-(trifluoromethyl)phenyl 4-(undec-10-enoyloxy)benzoate (M3). The chemical structures and liquid crystalline properties of the synthesized polymers have been investigated by FTIR, 1H-NMR, differential scanning calorimetry (DSC), polarizing optical microscopy (POM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). All chiral polymers show wide mesophase temperature ranges and a high thermal stability with decomposition temperatures (T d) at 5 % weight loss greater than 300 °C. P1–P4 display a single cholesteric phase, but P5–P7 containing more fluorinated units show a smectic A (SA) phase besides a cholesteric phase. The optical properties of the polymers have been characterized by circular polarization spectra and optical rotation analysis. The cholesteric polymers P3 and P4 exhibit different colors at room temperature, and the color can remain over 24 months. The maximum reflection bands of polymers P1–P4 shift to long wavelength with increasing the content of M3 in the polymer systems. For P5–P7, the reflection wavelengths change sharply around the temperature of the SA–Ch phase transition. The specific rotation value of P2 smoothly decreases from ?8.2° to ?0.29° when it is heated, but the specific rotation value of polymer P7 changes from negative value to positive value on heating cycle. The optical properties of the polymers offer tremendous potential for various optical applications.  相似文献   

5.
A series of side-chain cholesteric polysiloxanes (PQ) were synthesised with poly(methyl--hydrogeno)siloxane, cholesterol (4-allyoxybenzoate) (M1), and 4-hydroxyphenyl-4(allyloxy) phenylpropanoate (M2), 4-allyloxy-4 ‘-cyanobiphenyl (M3). Then azo-containing chiral liquid crystalline polymer (PZ) were synthesised with PQ and 4-(4-hexyloxyphenylazo) benzoic acid (M4) by esterifying catalysed by 4-dimethylaminopyridine which is a new synthetic way. The chemical structures of monomers and polymers were confirmed by conventional spectroscopic methods and test methods for liquid crystal properties. The photo-induced isomerisation of the polymer is investigated by UV–vis spectroscopy. Weight lost temperatures (5%) for all polymers were greater than 298°C. The results showed that the introducing of azo moieties makes the polymer more stable on thermo dynamics. The transition temperatures of the polymers PQ and PZ exhibited some regularity as the change of ingredients of polymers. PQ series showed Grandjean textures and PQ1–PQ5 exhibited blue selective reflection in the visible light region. PZ1–PZ5 also showed Grandjean textures and the texture colour of the polymer turned to red and colourful with green and blue due to increasing contents of azo moiety, and yellow selective reflection in the visible light region were observed. The molecular design introducing shorter and harder part into chiral polymerisation system is favourable to the appearance of selective reflection. All polymers turned out right-handed optical activity due to having the same cholesteric group, the photo-responsive behaviours of the PZ series were also investigated.  相似文献   

6.
In this work the new-style nematic monomer M1 , chiral crosslinking reagent MC and a series of new side-chain cholesteric liquid crystalline elastomers derived from M1 and MC were prepared. The effect of the content of the chiral crosslinking unit on phase behaviour of the elastomers has been discussed. Polymer P1 showed nematic phase, P2 P7 showed cholesteric phase, P3 formed Grandjean texture in the heating cycle and turned out a blue Grandjean texture in the cooling cycle, P2 P3 with less than 6 mol% of chiral crosslinking agent gave rise to selective reflection. The elastomers containing less than 15 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. Experimental results demonstrated that the glass transition temperatures reduced first and then increased, and the isotropisation temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking unit.  相似文献   

7.
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 ?P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 ?P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.  相似文献   

8.
A series of liquid crystalline polymers (LCPs) have been synthesised by two cholesteric monomers M1, M2 and a nematic monomer M3. The chemical structures and liquid crystalline properties of the monomers and polymers have been characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analyses, X-ray diffraction measurements and polarising optical microscopy. All LCPs show a high thermal stability with wide mesophase temperature ranges. For polymer P1 bearing only cholesteric LC monomers component, it shows a cholesteric phase, whereas others display a blue phase besides a cholesteric phase. The formation of the blue phase is based on the structures of the polymers and the produced biaxial helix. The glass transition temperature and isotropic temperature of the polymers decrease on heating cycle with increasing the content of M3 in the polymers. The specific rotation values of the polymers are temperature-sensitive. The reflection spectra of polymers P1P6 show that the maximum reflected wavelengths shift to long wavelength with increasing the content of M3 in the polymer systems. The frequency and intensity of the bands change sharply at the temperature where cholesteric phase changes to blue phase, but they show a weak dependence on temperature in the blue phase.  相似文献   

9.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

10.
含薄荷基的手性液晶单体的合成、结构与性能研究   总被引:1,自引:0,他引:1  
胡建设  刘聪  孟庆宝  王翔 《化学学报》2009,67(14):1668-1674
合成了五种新型含薄荷基的手性单体(M1~M5), 它们的结构、纯度及旋光性质通过了1H NMR, FT-IR、元素分析仪及旋光仪等手段的表征, 采用DSC, POM, UV/Vis/NIR等研究了单体的介晶性能、相行为及选择反射性能. 结果表明: 单体的比旋光度值随苯环数目的增加而降低, 通过在薄荷基与液晶核之间引入柔性间隔基元, 实现了含薄荷基单体具有液晶性能的目的. 除M1外, 其余四种单体均呈现手性近晶C (SC*)相和胆甾(Ch)相, 此外M5还出现了蓝相织构. M2~M4只在SC*相区能观察到选择反射现象, 而M5在SC*相区和Ch相区均出现明显的选择反射现象, 且随温度的升高, SC*相区的反射波长发生“红移”, 而Ch相区的反射波长则发生“蓝移”. 随着液晶核刚性的增加, 对应单体的熔点和清亮点增大, 液晶相范围变宽. 液晶核中的酯基桥键与组合方式也对单体的熔点和清亮点具有一定的影响.  相似文献   

11.
A series of liquid crystalline (LC) polysiloxanes containing diosgeninyl and menthyl groups (from monomers M 1 and M 2, respectively) were synthesized. The chemical structures of the monomers and polymers obtained were confirmed by elemental analysis, Fourier transform infrared spectroscopy, proton NMR and carbon‐13 NMR. The LC properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. Monomer M 1 showed cholesteric oily‐streak and spiral textures. Copolymers P 2P 5 exhibited cholesteric phases. With increasing concentration of M 2 units, the glass transition and clearing temperatures decreased. Experimental results demonstrated that a flexible polymer backbone and a long flexible spacer tended to favour a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

12.
New liquid crystalline monomer 4-(4-ethoxybenzoyloxy)biphenyl-4′-[(10-undecylen-1-yloxy)-4′-ethoxy]benzoate (M 1 ), chiral crosslinking agent isosorbide di-(10-undecylen-1-yloxybenzoate) (M 2 ), and the corresponding elastomers were prepared. The chemical structures of M 1 and M 2 were characterized by Fourier transform infrared and 1H-nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. M 1 exhibited typical threaded texture and droplet texture of nematic phase. The use of chiral crosslinking agent in the polymer networks could induce cholesteric phase. The elastomers containing less than 10 mol% of the chiral crosslinking units showed elasticity, reversible phase transition, wide mesophase temperature ranges, and high thermal stability. For the elastomers P 2 P 4 , the glass transition temperature (T g) increased; clearing temperature (T i) and mesophase temperature range (ΔT) decreased with increasing content of the crosslinking unit.  相似文献   

13.
The synthesis is described of four new chiral liquid crystalline monomers (M2–M5 ) and their corresponding side‐chain homopolysiloxanes (P2–P5 ) containing menthyl groups. Chemical structures were characterised using FT‐IR or 1H NMR spectra, and specific optical rotations were evaluated with a polarimeter. The phase behaviour and mesomorphic properties of the new compounds were investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy, UV/visible/NIR spectrocopy and X‐ray diffraction. The monomers and homopolymers with more aryl segments showed noticeably lower specific optical rotation value. The monomers M2–M5 formed a cholesteric or blue phase when a flexible spacer was inserted between the rigid mesogenic core and the terminal menthyl groups by reducing the steric effect. M2–M5 revealed enantiotropic cholesteric phase. Moreover, M2 also exhibited a monotropic smectic A (SmA) phase, and M4 also exhibited a cubic blue phase on cooling. The selective reflection of light shifted to the long wavelength region with increasing rigidity of the mesogenic core for M2–M5 . P2–P5 exhibited SmA phases, and the mesogenic moieties were ordered in smectic orientation with their centres of gravity in planes. Melting or glass transition temperature and the clearing temperature increased, and the mesophase temperature range widened with increasing rigidity of the mesogenic core.  相似文献   

14.
A series of new chiral monomers (M1–M4) and the corresponding siloxane polymers (P1–P4) containing menthyl groups were synthesised to establish the relationship between their structure and liquid crystalline properties. The effect of the mesogenic core rigidity and the spacer length on the phase behaviour of the monomers and polymers obtained in this study was discussed. The selective reflection of light for the chiral monomers was studied with UV-Vis spectrometer. Polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and thermogravimetric analysis were used to characterise the phase behaviour and thermal stabilities. It was found that these chiral monomers and polymers were beneficial for the formation of the mesophases when a flexible spacer was inserted between the mesogenic core and terminal menthyl groups. M1–M3 showed enantiotropic chiral smectic C phase and cholesteric phase, and monotropic cubic blue phase on cooling cycle. M4 only showed cholesteric phase. P1–P4 showed a smectic A phase. With increasing the mesogenic core rigidity or decreasing the spacer length, the corresponding melting temperatures, glass transition temperatures and isotropic temperatures all increased.  相似文献   

15.
The cholesteric polysiloxanes (PLQ series) were obtained by reacting cholesteric monomer and phenolic hydroxyl monomer in different ratios with polysiloxanes. The chiral azo-containing polysiloxanes liquid-crystalline elastomers (LCEs) were synthesised by esterifying PLQ series with acyl acid of azo diacid catalysed by 4-dimethylaminopyridine (DMAP). The chemical structures and mesomorphic properties of monomers and polymers were confirmed by conventional spectroscopic methods. The elastomers displayed elastic properties, reversible phase transition and high thermal stability. The Tg values changed irregularly and Ti values decreased at the beginning and then increased afterwards. The chiral azo-LCEs showed colourful textures and a Grandjean texture could be observed, which exhibited a red shift with increasing content of azo moiety. PLQ2–PLQ6 exhibited selective reflection in the visible light region, but PLZ1–PLZ4 can only observe selective reflection when appropriate mechanical pressure was imposed on the polymers. The PLZ series was carefully investigated by ultra violet–visible spectroscopy.  相似文献   

16.
A new series of side-chain chiral liquid crystalline elastomers derived from M1 (cholest-5-3-ol(3β)-4-(2-propen-yloxy)]benzoate) and MC(2,5-[3,5-bis(4-(3-(4-(allyloxy)phenyl)propanoyloxy)benzoyloxy)benzoic acid]isosorbide diester). The structures of monomers and elastomers measured by using Proton Nuclear Magnetic Resonance Spectra (1H-NMR) and Fourier transform infrared spectroscopy (FTIR) separately are consistent with our design. IIP~VIP all appeared blue Grandjean (GJ) texture on the heating cycle or cooling cycle. The glass sheets of IIP~VIP were made under 150°C and measured its ultraviolet–visible spectrophotometry by PerkinElmer Lambda 950 instrument (Shelton, CT, USA). IIP~VIP all have absorptions at about 481~483 and 561~562 nm. The optical activities were measured at different temperatures on heating and cooling cycles. And the blue selective reflection of IIP~VIP on the round glass sheet can be seen. The elastomers containing less than 6 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. The glass transition temperatures reduced first and then increased, the isotropisation temperatures and the mesophase temperature ranges increased first and then decreased with increasing content of crosslinking unit. The thermogravimetric analysis (TGA) results showed that the temperatures at which 5% weight loss occurred (Td) were greater than 310°C for all the polymers.  相似文献   

17.
New chiral derivatives of thiophene fused with menthane, camphor or the 3R-3-methylcyclohexane ring were prepared and studied as chiral dopants in cholesteric liquid crystalline mixtures. The helical twisting power of the most effective compounds of this series, menthothiophenes, was strong enough to obtain selective reflection of visible light at 16 wt% concentration of the dopant in a non-chiral nematic host.  相似文献   

18.
A series of novel thermotropic side chain liquid crystalline polymers was synthesized by grafting copolymerization of a mesogenic monomer, 4-allyloxybenzoyl-4′?-(4-n-alkylbenzoyl)–p-benzenediol bisate and a chiral monomer, menthyl undecylenate. The mesogenic monomers exhibited nematic threadlike textures during heating and cooling. The polymers showed thermotropic liquid crystalline properties with a broad mesomorphic region over a range of 100°C. The polymers exhibited a cholesteric mesophase with a colourful Grand-Jean texture when the content of chiral units was greater than 15?mol?%; the others exhibited nematic threadlike textures. All of the polymers were thermally stable over 300°C, and most were laevorotatory as the chiral monomer.  相似文献   

19.
Three series of thermotropic liquid crystalline polycarbonates and poly(ester‐carbonate)s were prepared by solution polycondensation of 4,4′‐biphenyldiol (BP), 4′‐hydroxybiphenyl‐4‐hydroxybenzoate (HHB), or 4‐hydroxyphenyl‐4″‐hydroxybiphenyl‐4′‐carboxylate (HHBP), as mesogenic unit, with 1,10‐bis(p‐hydroxybiphenoxy)decane (N10), bisphenol A (BPA), 4,4′‐dihydroxy‐diphenyl ether (BPO), 4,4′‐[phenylbis(oxy)]bisphenol (BPOO), methylhydroquinone (MeHQ), or phenylhydroquinone (PhHQ). One series of cholesteric poly(ester‐carbonate)s were also prepared by using HHBP, the aromatic diols mentioned above and isosorbide as the chiral moiety. All polycondensations were implemented in pyridine by using triphosgene as the condensation agent. The synthesized polycarbonates were characterized by viscometer, FTIR, DSC, TGA measurements, polarizing microscopy equipped with a heating stage, and WAXD powder pattern. In this study, it was found that the liquid crystalline properties of polycarbonates strongly rely on the mesogenic unit applied. HHBP‐series exhibits a wide temperature region of liquid crystalline (LC) phase even with 50% of bisphenol A (BPA), which is a V‐shaped structure and usually destroys liquid crystalline properties. In addition, homopolycarbonate with HHBP structure possesses extraordinarily low phase‐transition temperature and wide liquid crystalline phase range, due to its asymmetric structure. This asymmetric structure results in head‐to‐tail, head‐to‐head, and tail‐to‐tail random conformation of polymer chain. The isosorbide containing poly(ester‐carbonate)s formed cholesteric phase, which showed homogeneous blue, green, or red Grandjean texture upon shearing in molten state and the Grandjean texture could be frozen easily while quenching the sample to the room temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1852–1860, 2000  相似文献   

20.
To study structure–mesomorphism relationships of the monomers and polymers based on menthol, four new chiral monomers ( M1 – M4 ) and the corresponding homopolymers ( P1 – P4 ) with menthyl group were synthesized. Their chemical structures, formula, phase behavior, and thermal stability were characterized by FTIR, 1H NMR, 13C NMR, elemental analyses, differential scanning calorimetry, polarizing optical microscopy, X‐ray diffraction, and thermogravimetric analysis. The selective reflection of light was investigated with ultraviolet/visible spectrometer. The influence of the mesogenic core rigidity, spacer length, and menthyl steric effect on the mesomorphism of M1 – M4 and P1 – P4 was examined. By inserting a flexible spacer between the mesogenic core and the terminal menthyl groups, four target monomers and polymers could form the expected mesophase. Moreover, their melting temperature (Tm), glass transition temperature (Tg), clearing temperature (Ti), and mesophase range (ΔT) increased with increasing the mesogenic core rigidity; whereas the Tm and Tg decreased, Ti and ΔT increased with an increase of the spacer length. M1 and M2 showed monotropic and enantiotropic cholesteric phase, respectively, whereas M3 and M4 all revealed chiral smectic C (SmC*), cholesteric and cubic blue phases. In addition, with increasing temperature, the selective reflection of light shifted to the long wavelength region at the SmC* phase range and to the short wavelength region at the cholesteric range, respectively. P1 and P2 only showed a smectic A (SmA) phase, whereas P3 and P4 exhibited the SmC* and SmA phases. All the obtained polymers had very good thermal stability. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号