首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article electromagnetic simulations of tunable terahertz metamaterial infiltrated with nematic liquid crystal are described. A full-wave analysis technique based on the finite-difference time-domain (FDTD) method was done by employing QuickWave 3D electromagnetic solver. Scattering parameter analysis shows a resonant frequency shift of 0.8 THz obtained by reorienting the layered highly birefringent nematic liquid crystal. Effective refractive index for operation frequency varies from negative to positive values.  相似文献   

2.
ABSTRACT

In this work, a tunable dual-band near-infrared perfect metamaterial absorber formed by combining a highly birefringent nematic liquid crystal with a nanoscale metamaterial cavity arranged in mirror symmetry is designed and numerically investigated. Electromagnetic simulations indicate that the absorbance greater than 99.4% may be achieved at 328 THz and 364 THz. Perfect absorbance results both form the use of highly lossy metal and the optimization of the metamaterial structure. In addition, absorbance of the metamaterial device can be substantially tuned both in terms of its magnitude and wavelength with the spectral tunability up to 8 THz by switching of liquid crystal alignment. The soft-matter-based metamaterial absorbers may pave a crucial role towards various active multifunctional systems working in the near-infrared range.  相似文献   

3.
We demonstrate a liquid crystal (LC) mode switched by mixed electric fields of in-plane and fringe fields, which are self-adjusted by adopting a bottom floating electrode for enhanced electro-optical properties. In our LC mode structure, conventional in-plane switching (IPS) electrodes are formed as pixel electrodes and common electrodes on an insulating layer and floating electrodes that are patterned per the sub-pixels. When the areas of the pixel and common electrodes are identical, the voltage of the bottom floating electrode is spontaneously determined to be half the value of the pixel voltage, which ideally generates symmetric fringe fields with both pixel and common electrodes. Due to the in-plane fields additionally generated between the pixel and common electrodes, the proposed LC structure operates by mixed-field switching (MFS), which shows higher transmittance than fringe-field switching (FFS) and IPS LC modes. Transmittance of the conventional FFS and IPS LC modes is highly sensitive to the in-plane electrode’s width (w) and spacing (l) condition, but the proposed MFS LC mode shows good transmittance without degradation with large variations of the in-plane electrode’s spacing-to-width ratio (l/w).  相似文献   

4.
We experimentally demonstrate an effective method of manipulating terahertz radiation using a metamaterial loaded with a liquid crystal. Active control of the terahertz beam was performed by in-plane electrical switching of the nematic liquid crystal in the metamaterial device. By changing the magnitude of the AC bias voltage from 0 to 100 V, a reversible transmittance shift of up to 10% was achieved for an incident beam with horizontal electric field polarisation and 27% for vertical polarisation with frequency at around 0.7 THz. Metamaterials with electrically tunable characteristics have potential applications in transmission, modulation and switching components and devices for controlling the intensity and phase of terahertz radiation.  相似文献   

5.
A polymer-stabilised blue-phase liquid crystal display (PSBP-LCD) with double-sided protrusion (DSP) electrodes structure is proposed. The oblique electric field between the protrusion electrodes inside both top and bottom glass substrates can induce more isotropic-to-anisotropic transition in the polymer-stabilised blue-phase liquid crystal (PS-BPLC) medium through Kerr effect than using the in-plane switching electrode. For the same electrode width, spacing and cell gap, the transmittance of PSBP-LCD with the DSP electrodes is ~29% higher than that using the IPS electrode.  相似文献   

6.
ABSTRACT

A single-domain blue-phase liquid crystal display (BPLCD), which has asymmetrical double-side electrode structure, is proposed to reduce gamma shift. Firstly, the electro-optical curve and gamma shift of the proposed BPLCD are discussed under the comparison with conventional in-plane switching (IPS) BPLCD. And then, its gamma shift is investigated under various conditions. Compared with the conventional IPS-BPLCD, the operating voltage can be reduced by ~31%, and the transmittance is increased by ~6%. The indistinguishable gamma shift can be obtained under various electrodes’ sizes, when the cell gap is appropriate. The results also indicate that if the electrodes’ height and Kerr constant of BPLC increase, the operating voltage can be further reduced (only 9.6 V in this work), and the gamma shift almost do not change. Moreover, a certain misalignment between the top and bottom glasses are permitted, which is good for reducing the fabrication difficulty. In terms of viewing angle, the proposed BPLCD has an average contrast ratio of ~5000:1, and the gamma shifts at full viewing angles are all indistinguishable.  相似文献   

7.
Abstract

The supermolecular structure and the electro-optic properties of a composite system consisting of a dense liquid-crystalline network and a low molar mass liquid crystal embedded in the network have been characterized. The composite systems were obtained by a photopolymerization of mixtures of a rigid mesogenic spacerless diacrylate and a low molar mass liquid crystal. They are characterized by a homogeneous distribution of the low molar mass liquid crystal in the network. The network has a cocontinuous periodic spinodal-type structure having a characteristic length scale of the order of 10 nm, if the low molar mass liquid crystal is removed or replaced by other solvents. The electro-optic switching properties are characterized by the fact that the active switching time and the width of the Frederiks transition are shifted to larger values as compared to those of the pure liquid-crystalline state. The decay times, on the other hand, are strongly reduced in the network.  相似文献   

8.
A new ferroelectric liquid crystal, 1-ethylpropyl (S)-2-[2-fluoro-4-(4′-decyloxybiphenylcarbonyloxy) benzoyloxy] propanoate, F, was synthesized and mixed with an achiral swallow-tailed material, 2-propylpentyl 4-(4′-nonyloxybiphenyl-4-carbonyloxy) benzoate,P, for the preparation of binary mixtures for the study. The binary mixtures gave a phase sequence SmA* -SmC* -SmX*. The electro-optic response of the mixtures in the ferroelectric SmC* phase was investigated. V-shaped switching was observed as the amount of the achiral swallow-tailed material became greater than 20 wt %. This result suggests that thresholdless, V-shaped switching in ferroelectric liquid crystal mixtures can be achieved by mixing a ferroelectric liquid crystal with an achiral swallow-tailed compound.  相似文献   

9.
A blue-phase liquid crystal display (BPLCD) with low operating voltage and high transmittance is demonstrated by using a high dielectric material, which is used as an insulation layer or protrusion fixed on the pixel and common electrodes in in-plane switching (IPS) mode. The operating voltage is reduced to about 14 V and the transmittance is improved for the BPLCD with high dielectric constant protrusion. Compared with the conventional protrusion electrode structure, the proposed protrusion can make manufacturing process simple and easy because the electrode has no complex shape. The results will be significant in designing optimal BPLCDs.  相似文献   

10.
Abstract

A fast electrooptic modulation in a polymer waveguide using a ferroelectric liquid crystal has been proposed. In this device, the surface stabilized ferroelectric liquid crystal and the soft mode ferroelectric liquid crystal are used as an active material on the passive polymer waveguide, and electrooptic switching is realized by controlling the total reflection at the polymer waveguide-liquid crystal interface. The response time is of the order of several microseconds. The analogue electrooptic modulation in the waveguide is realized using the field induced linear molecular tilt of the electroclinic effect in the soft mode ferroelectric liquid crystal.  相似文献   

11.
A submillisecond response, wide view and single-cell-gap transflective (TR) display employing a blue-phase liquid crystal is proposed. The device employs polar opposite in-plane switching (IPS) electrodes. To balance the optical phase retardation between transmissive (T) and reflective (R) regions, the IPS electrodes are formed with unequal gaps in the two regions. This display exhibits reasonably high optical efficiency and well-matched voltage-dependent transmittance and reflectance curves.  相似文献   

12.
An achiral swallow-tailed material, 2-propylpentyl 4-(4′-decyloxybiphenyl-4-carbonyloxy)benzoate, p, showing SmA and SmCalt phases was prepared for mixing (by weight percentage) with an antiferroelectric liquid crystal, (S)-MHPOBC, m, for the study. The binary mixture p/15/m85 using (S)-MHPOBC (85%) as a host doped with achiral material (15%) resulted in a phase sequence SmA-SmC*-SmC*A. The electro-optic response of this mixture in the ferroelectric SmC* phase displayed V-shaped switching, while that in the antiferroelectric SmC*A phase displayed a double hysteresis switching. The mixture p85/m15 possessed SmA* and SmC*A phases; V-shaped switching was found in the antiferroelectric SmC*A phase of this mixture. These optical phenomena implied that a binary mixture containing a larger amount of achiral swallow-tailed material and/or possessing relatively lower polarization favours the occurrence of V-shaped switching in the antiferroelectric phase. The results of this work also suggested that thresholdless V-shaped switching in chiral smectic liquid crystals can be achieved by mixing an achiral swallow-tailed material with an antiferroelectric liquid crystal.  相似文献   

13.
《Liquid crystals》1998,25(6):699-709
In-plane switching (IPS) of liquid crystals showed advantageous voltage-holding ratio (VHR) characteristics so that liquid crystals with low resistivity could provide higher VHRs compared with the twisted nematic effect. This experimental result was obtained when electric fields were applied approximately parallel to the substrate plane using the IPS electro-optical effect. We found that the in-plane electric field generates supplementary capacities which support retention of an externally applied voltage over the liquid crystal layer during non-selected periods of the active matrix driving scheme, because the liquid crystal layer can be connected with an insulating layer, an orientation layer and even a substrate in parallel. Based on these advantageous VHR characteristics, liquid crystal materials suitable for the IPS effect were appropriately optimized. We propose evaluation parameters, derived from the physical switching principles of the liquid crystals, to obtain lower driving voltage and faster response speeds. These parameters are effective in optimizing the physical properties of liquid crystals without variation of the cell gap. We use the proposed evaluation parameters and the advantageous VHR characteristics to demonstrate the optimization approach and we suggest a novel possible use of liquid crystal materials with low resistivity which cannot be implemented conventionally. Finally, we prove that liquid crystals with low resistivity generate the Ir internal potential by the drift of ionic species.  相似文献   

14.
We investigated theoretically the dynamics of in-plane switching (IPS) cells with small pretilt angle and found that the liquid crystal director variation causes optical bounce after switching on an applied voltage. We analysed the behaviour of the director by computer simulation and found that the optical bounce occurs during the rising period with the normal twist and tilt angles of the directors in the IPS cell in the absence of the field-induced backflow effect. Pretilt angle is the source of this optical bounce.  相似文献   

15.
We investigated theoretically the dynamics of in-plane switching (IPS) cells with small pretilt angle and found that the liquid crystal director variation causes optical bounce after switching on an applied voltage. We analysed the behaviour of the director by computer simulation and found that the optical bounce occurs during the rising period with the normal twist and tilt angles of the directors in the IPS cell in the absence of the field-induced backflow effect. Pretilt angle is the source of this optical bounce.  相似文献   

16.
The in-plane switching of homogeneously aligned nematic liquid crystals   总被引:6,自引:0,他引:6  
《Liquid crystals》1997,22(4):379-390
We have investigated the electro-optical effects and physical switching principle of homogeneously aligned nematic liquid crystals when applying an in-plane electric field with interdigital electrodes. By using the in-plane switching (IPS) of the liquid crystals which is achieved by the in-plane electric field, the viewing angle characteristics of the electro-optical effects were confirmed to be far superior to those of the conventional twisted nematic mode in which the electric field is applied along the direction perpendicular to the substrates. The non-reversal region of grey scales was extremely wide in which a high contrast ratio was kept, even along quite an oblique direction in the IPS mode. In order to clarify the switching principle of the liquid crystals in the IPS mode, a simplified expression describing the threshold behaviour of the device was derived with the assumption that a uniform in-plane electric field was applied along a direction perpendicular to the director and parallel to the homogeneously aligned nematic slab, and found to be sufficiently able to explain the experimental results. First, a critical field at which the liquid crystals just began to twist, was found to be proportional to the reciprocal of the cell gap. Second, it was the electric field and not the voltage that drives the liquid crystals. This relationship was due to the independence of the electric field regarding the liquid crystal layer normal direction. So the threshold voltage in the IPS mode was strongly dependent on the variation of the cell gap. For the dynamical response mechanism of the liquid crystals to the in-plane electric field, the switching on and off processes of the liquid crystals were analysed quantitatively. The relaxation time of the liquid crystals when removing the electric field could be described as proportional to the square of the cell gap. A thinner cell gap also proved to be effective in obtaining a fast response time in the IPS mode. In contrast, the switching on time when applying the in-plane electric field was found to be inversely proportional to the difference between the square of the electric field strength and the square of the critical electric field strength at which the liquid crystals began to deform.  相似文献   

17.
The light leakage in a black state of in-plane switching (IPS) liquid crystal display (LCD) associated with rubbing process has been investigated. The mechanical rubbing process with a cloth caused orientation disorders in the liquid crystal directors and these partial orientation disorders result in residual retardations of the IPS LCD, causing the light leakages at the black state. In this study, we theoretically estimated how the light leakage is associated with the rubbing uniformity using 2 × 2 Jones matrix equation and also experimentally confirmed how it is associated with structural properties of the alignment layer. The light leakage was clearly reduced in the alignment layer with reduced crystallinity and flexibility.  相似文献   

18.
ABSTRACT

We designed and synthesised a reactive mesogen containing diphenylacetylene moiety in the mesogenic core and two polymerisable acrylate groups at both ends. By irradiating linearly polarised UV light on the conventional host LC mixture containing a small amount of the synthesised reactive mesogen in a sandwiched cell without an alignment layer, we demonstrated an in-situ photo-induced homogeneous alignment of liquid crystals without a pre-treated alignment layer, which was achieved by an irreversible polarisation-selective [2 + 2] photodimerization of diphenylacetylene moiety with linearly polarised UV irradiation at above the isotropic temperature of LC mixture. The resulting homogeneous alignment showed a superior initial dark state, negligible pretilt angle and excellent stabilities. Furthermore, the in-plane switching (IPS) LC cell prepared by this method exhibited a better dark state and electro-optic performance compared to that with conventional-rubbed polyimide alignment layer. The single photoirradiation process automatically resulted in a perfect alignment matching of optical axes between the top and bottom substrates in the LC cell, giving rise to an excellent dark state overcoming an intrinsic misalignment issue and complex fabrication process. The proposed in-situ alignment method is a promising candidate for cost-effective, green-manufacturing, and high-quality alignment technique in the manufacturing of high-resolution liquid crystal displays.  相似文献   

19.
We propose a new electrode configuration, called diamond-shape in-plane switching, to lower the operation voltage of polymer-stabilised blue-phase liquid crystal (BPLC) displays (BPLCDs). The electrode structure is modified from conventional protruded IPS, where the strip protrusion is changed to diamond shape. By optimising the electrode gap and diamond length, we are able to obtain peak transmittance over 75% at 15 V. It enables single thin-film transistor (TFT) driving, and more importantly, this is based on an industrially proven BPLC material. That means good long-term stability, adequate TFT charging time for high-resolution displays and sub-millisecond response time and acceptable voltage-holding ratio for field sequential displays can be achieved simultaneously. Our device design helps accelerate the emergence of the long-awaited BPLCDs.  相似文献   

20.
The diagonal viewing angle light leakage in a black state of in-plane switching (IPS) liquid crystal display (LCD) associated with pretilt angle has been investigated. The mechanical rubbing process with a cloth causes relatively high pretilt angle in the homogenously aligned liquid crystals (LCs) so that the tilted LC director results in increase of a light leakage in a black state at diagonal viewing angles. In this study, we theoretically estimated using classical optic theory how the light leakage in a black state at diagonal viewing angle is associated with the pretilt angle and also proposed an effective method to reduce the pretilt angle from 1.5° to 0° in rubbed IPS LCD by utilising polymer stabilisation. With this approach, we could successfully acquire a better black quality in all viewing angles as compared with normal IPS LCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号