首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We propose a homogeneously aligned liquid crystal (LC) cell with double-side protrusion electrodes for fast response and low-voltage operation. In the proposed device, both the bottom and top substrates have pixel electrodes to generate the fringe electric field. Because the penetration depth of the electric field is increased owing to the protrusion electrodes, the operating voltage is very low and the turn-on time is dramatically reduced compared with the conventional in-plane switching (IPS) mode. Moreover, LC molecules anchored strongly to the penetrated protrusion electrodes on both substrates exert a strong restoring force, resulting in a fast turn-off time. We found that the total response time of the LC cell with the proposed structure is three times faster than that of the conventional IPS mode.  相似文献   

2.
Transmittance characteristics were studied as a function of cell gap for a homogeneously aligned liquid crystal (LC) cell driven by a fringe‐electric field—named fringe‐field switching (FFS) mode. The light efficiency of a conventional LC cell using in‐plane switching and twisted nematic modes, where the LC director is determined by competition between elastic energy and electrical energy, does not depend on cell gap as long as the cell retardation value remains the same; i.e. only dielectric torque contributes to the deformation of the LC director. However, the transmittance of the FFS mode is dependent on the cell gap such that it decreases as the cell gap decreases, although the cell retardation value remains the same. This unusual behaviour (unlike that of conventional LC cells) arises because in the device the elastic and dielectric torques have the role of determining the LC director, such that the driving voltage giving rise to maximum transmittance becomes strongly dependent on the electrode position when the cell gap is as small as 2?µm. In addition, the LCs at the centre of the pixel and common electrodes are not sufficiently twisted because of a competition between the two elastic forces, which tries to twist the LCs in plane and hold them in their initial state by surface anchoring.  相似文献   

3.
A blue-phase liquid crystal display (BPLCD) with low operating voltage and high transmittance is demonstrated by using a high dielectric material, which is used as an insulation layer or protrusion fixed on the pixel and common electrodes in in-plane switching (IPS) mode. The operating voltage is reduced to about 14 V and the transmittance is improved for the BPLCD with high dielectric constant protrusion. Compared with the conventional protrusion electrode structure, the proposed protrusion can make manufacturing process simple and easy because the electrode has no complex shape. The results will be significant in designing optimal BPLCDs.  相似文献   

4.
When a dielectric layer, in-cell retarder (ICR) is formed between the electrode and LC layer to obtain a single-gap transflective fringe-field switching (FFS) display, the driving voltage is highly increased due to the thickness of the dielectric material. In particular, the driving voltage of the transmissive part becomes very high, and goes beyond the driver integrated circuit (IC) range for mobile application because the homogenously aligned liquid crystal director should rotate twice as far as that in the reflective part. The correlation between the driving voltage and electrode structures was investigated. It was found that the problem could be solved by optimisation of the common electrode structure such that the electrode structure changed from a plane to slit shape (in-plane field is mainly used instead of fringe field), realising a high performance FFS transflective display.  相似文献   

5.
In order to lower the saturation voltage and enhance the transmittance of in-plane switching blue-phase liquid crystal display (IPS-BPLCD), IPS-BPLCD with insulating protrusion is proposed. The single-protrusion (only set on the top of pixel electrode) and double-protrusion (set on the top of pixel and common electrodes) structures are investigated in this work. The potential distribution changes when the protrusion is used. There is a thicker transverse electric field in BPLC range, because the stronger electric field at the edges of the electrodes is decentralised into BPLC range. As a result, the saturation voltage is reduced from 36.3 V to 28.9 V when the double-protrusion structure is used, and transmittance is increased by ~20%. The contrast ratio is larger than 1000:1 in 60° viewing cone using a half-wave biaxial film. Both single-protrusion and double-protrusion structures have the uniform gamma curves at large oblique viewing angles. Moreover, the off-axis image distortion index is 0.1590 at 60º polar angle when zigzag electrodes are used.  相似文献   

6.
Fringe-field switching (FFS) liquid crystal (LC) mode is mainly used for high-end LC displays. At present, an LC with positive dielectric anisotropy is utilised, although light efficiency of the device in a white state is not maximised due to generation of tilt angle near the edge of electrodes along the field direction. In order to overcome the demerit, an LC with negative dielectric anisotropy has been challenged. In this article, FFS mode, which shows a high light efficiency and a low operating voltage, is investigated with the utilisation of fringe in-plane electric field. The optimised device shows improved electro-optic characteristics in comparison with not only conventional LC modes, but also previously proposed FFS device using a positive type of LC.  相似文献   

7.
A blue-phase liquid crystal displays (BP-LCDs) with slit-shaped pixel and common electrodes structure is proposed to increase the transmittance. It generates not only in plane field between the pixel electrodes, but also fringe field above the common electrodes. As a result, the high transmittance is obtained. The aperture ratio is also improved because of the capacitor between the pixel and common electrodes.  相似文献   

8.
ABSTRACT

A single-domain blue-phase liquid crystal display (BPLCD), which has asymmetrical double-side electrode structure, is proposed to reduce gamma shift. Firstly, the electro-optical curve and gamma shift of the proposed BPLCD are discussed under the comparison with conventional in-plane switching (IPS) BPLCD. And then, its gamma shift is investigated under various conditions. Compared with the conventional IPS-BPLCD, the operating voltage can be reduced by ~31%, and the transmittance is increased by ~6%. The indistinguishable gamma shift can be obtained under various electrodes’ sizes, when the cell gap is appropriate. The results also indicate that if the electrodes’ height and Kerr constant of BPLC increase, the operating voltage can be further reduced (only 9.6 V in this work), and the gamma shift almost do not change. Moreover, a certain misalignment between the top and bottom glasses are permitted, which is good for reducing the fabrication difficulty. In terms of viewing angle, the proposed BPLCD has an average contrast ratio of ~5000:1, and the gamma shifts at full viewing angles are all indistinguishable.  相似文献   

9.
A submillisecond response, wide view and single-cell-gap transflective (TR) display employing a blue-phase liquid crystal is proposed. The device employs polar opposite in-plane switching (IPS) electrodes. To balance the optical phase retardation between transmissive (T) and reflective (R) regions, the IPS electrodes are formed with unequal gaps in the two regions. This display exhibits reasonably high optical efficiency and well-matched voltage-dependent transmittance and reflectance curves.  相似文献   

10.
ABSTRACT

To reduce the gamma shift of blue-phase liquid crystal display (BPLCD), the multi-domain electrode structure with four sub-electrodes is proposed. The effects of electrodes’ parameters on electro-optical curve and gamma shift are calculated, and the gamma shift and contrast ratio at full viewing-cone are also investigated. For the proposed protrusion BPLCD, the operating voltage is reduced by ~73%, and the transmittance is increased by ~20% compared with the conventional in-plane switching BPLCD. The results also show that the off-axis image distortion index can be reduced from 0.4318 to 0.0875 at the polar angle of 60°, and it works well under various electrodes’ sizes. Moreover, the indistinguishable gamma shift can be obtained at full viewing-cone for the proposed BPLCD, and the uniform light distribution and high contrast ratio can be obtained as well.  相似文献   

11.
《Liquid crystals》2000,27(3):365-370
We have studied the electro-optical characteristics of a homogeneously aligned nematic liquid crystal (LC) with weak planar anchoring of the director at the bounding substrates. By using the in-plane switching (IPS) of the LC which is achieved by an in-plane electric field, the driving voltage was confirmed to be far less than that of the conventional IPS mode in which both substrates possess strong anchoring characteristics. Moreover, because of the absence of strong subsurface director deformations, the cell could operate optically in the Mauguin regime. Using these features we propose a new type of LC switching mode - in-plane sliding (IPSL) mode. We have realized this mode in a LC cell comprising one reference substrate with strong director anchoring and one substrate covered with photoaligning material with weak anchoring. In order to clarify the switching process, we derived a simplified expression for the threshold voltage on the assumption of uniformity of the in-plane electric field. For the dynamical response of the LC to the in-plane electric field, the switching on and off relaxation times of the IPSL mode were found to be longer than for the traditional IPS mode. However, we have proposed an optimized cell geometry for the IPSL mode with a response time comparable to that of the IPS mode.  相似文献   

12.
We have studied cell gap-dependent driving voltage characteristics in a homogeneously aligned nematic liquid crystal (LC) cell driven by a fringe electric field, termed the fringe field switching (FFS) mode. The results show that for the FFS mode using a LC with positive dielectric anisotropy, the operating voltage decreases as the cell gap decreases, whereas it increases with a decreasing cell gap when using a LC with negative dielectric anisotropy. The difference between LCs is explained by simulation and experiment.  相似文献   

13.
We have studied cell gap-dependent driving voltage characteristics in a homogeneously aligned nematic liquid crystal (LC) cell driven by a fringe electric field, termed the fringe field switching (FFS) mode. The results show that for the FFS mode using a LC with positive dielectric anisotropy, the operating voltage decreases as the cell gap decreases, whereas it increases with a decreasing cell gap when using a LC with negative dielectric anisotropy. The difference between LCs is explained by simulation and experiment.  相似文献   

14.
《Liquid crystals》2012,39(12):1790-1798
ABSTRACT

A simple transflective liquid crystal display with a vertically aligned cell using a composite dielectric layer is demonstrated. The top substrate has a top planar common electrode, two transparent dielectric layers with different dielectric constants are coated on the bottom planar pixel electrode to generate linearly varying electric potential from the transmissive region (T region) to the reflective region (R region), while two bumpy reflectors are coated under the bottom substrate. In this device, with the composite dielectric layer, the common and pixel electrodes generate a strong electric potential in the T region and a relatively weak electric potential in the R region. Consequently, the T and R regions accumulate the same electro-optical characteristics. The simulation results show that the display exhibits reasonably low operating voltage, high optical efficiency and well-matched voltage-dependent transmittance (VT) and reflectance (VR) curves. Besides, the driving mode and the fabrication process of the transflective liquid crystal display are fairly simple and it is suitable for mobile applications.  相似文献   

15.
The in-plane switching (IPS) mode in liquid crystal displays is known to exhibit a wide viewing angle. However, since the LC director rotates in one direction in the plane, devices with a single domain exhibit both a colour shift depending on the viewing angle, and greyscale inversion at specific angles especially at low grey levels. This has been improved by wedge shaped electrodes so that fields in two directions exist inside a pixel, causing the LC molecules to rotate in opposite directions to compensate each other; this acts as a virtual two domains structure. Nevertheless, the colour shift still exists to some extent, especially at low grey levels. In this paper, we propose a realistic two-domain IPS mode that exhibits a minimized colour shift at all grey levels on changing the viewing direction. In this device, the LC molecules are initially aligned in two directions orthogonal to each other, and two field directions exist perpendicular to each other. We have performed device simulations with respect to viewing angle characteristics, and found that IPS devices with a real two-domain structure reduce the variation of the retardation more effectively, when the viewing direction changes.  相似文献   

16.
A viewing angle controllable fringe and in-plane switching vertical alignment liquid crystal display (LCD) structure has been proposed. To realise the change from wide viewing angle (WVA) to narrow viewing angle (NVA) in a single LCD panel, the bias voltage is applied on the common electrode, and NVA can decreases with the increasing bias voltage. In WVA mode, the viewing angle cone (contrast ratio larger than 1000:1) is almost 70° and the contrast ratio is larger than 100:1 in arbitrary azimuthal directions. In NVA mode, the viewing angle cone (10:1) can continuously and uniformly change from 40° to 20°.  相似文献   

17.
A low-voltage and high-transmittance blue-phase liquid crystal display (BPLCD) with concave electrodes is proposed. We use in-plane switching electrodes on the etched substrates to generate the concave electrodes. The proposed device can generate a strong in-plane field with a large horizontal component to increase the transmittance and reduce the operating voltage. As a result, a low voltage ~9 V and reasonably high transmittance ~71.7% can be achieved. Moreover, due to the generated multi-domain structures in the etched areas, this BPLCD can obtain a symmetric and wide viewing angle and the contrast ratio of 1000:1 is obtained over 60° viewing cone.  相似文献   

18.
A single-cell-gap transflective liquid crystal display with a vertically aligned cell using square ring electrode is demonstrated. The top substrate has a top planar common electrode, a square ring pixel electrode is coated on the bottom substrate, while a bumpy reflector is coated under the bottom substrate. In this device, the planar common electrode and square ring pixel electrode generate a strong longitudinal electric field in the transmissive region (T region) and a weak fringe field in the reflective region (R region). As result, the T and R regions accumulate the same optical phase retardation. The simulation results show that the display exhibits reasonably low operating voltage, high transmittance and well-matched voltage-dependent transmittance and reflectance curves. Besides, fabrication process of the transflective liquid crystal display is very simple.  相似文献   

19.
A method to enable smectic A (SmA) liquid crystal (LC) devices to switch uniformly and hence fast from the clear state to a scattered state is presented. It will allow the reduction of the switching time for a SmA LC panel of 1 × 1 m2 changing from a clear state to a fully scattered state by more than three orders to a few tens of milliseconds. Experimental results presented here reveal that SmA LC scattering initiates from the nucleated LC defects at the field gradient of the applied electric field usually along the edges of the panel electrode and grows laterally to spread over a panel, which takes a long time if the panel size is large. By patterning the electrodes in use, it is possible to create a large number of field gradient sites near the electrode discontinuities, resulting in a uniform and fast switching over the whole panel and the higher the pattern density the shorter the panel switching time. For the SmA LC panels used here, the ITO transparent electrodes are patterned by laser ablation and photolithography. It is shown that the defect nucleation time is much shorter than the growth time of the scattered region, hence it is possible to use the density of the field gradient sites to control the uniformity and switching time of a panel. Furthermore, the patterned SmA panels have a lower switching voltage than that of the non-patterned ones in general.  相似文献   

20.
A single-cell-gap transflective polymer-stabilised blue-phase liquid crystal display with opposite polar pixel electrodes on an etched substrate is proposed. In the proposed structure, the space between common electrodes is adopted as transmissive region, and the space above the common electrode is adopted as reflective region. By optimising the electrode parameters of the transmissive and reflective regions, well-matched voltage-dependent transmittance and reflectance curves can be obtained. In addition, the device has good performances of low operating voltage (~3.2 V), high optical efficiency and a wide viewing angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号