首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The oxidation with SeO2 of a methyl group linked to an sp2-hybridized carbon in the product of the intramolecular iodoetherification of cis-carveol afforded (1R,5R,7S)-7-iodomethyl-7-methyl-6-oxabicyclo[3.2.1]-oct-3-en-4-carbaldehyde and [(1R,5R,7S)-7-iodomethyl-7-methyl-6-oxabicyclo[3.2.1]oct-3-en-4-yl]methanol that were oxidized to methyl (1R,5R,7S)-7-iodomethyl-7-methyl-6-oxabicyclo[3.2.1]oct-3-en-4-carboxylate. The latter by the Zn-promoted opening of the γ-oxide ring was converted into the target chiral block, methyl (4R,6R)-6-hydroxy-4-(prop-1-en-2-yl)cyclohex-1-encarboxylate.  相似文献   

2.
An achiral swallow-tailed material, 2-propylpentyl 4-(4′-decyloxybiphenyl-4-carbonyloxy)benzoate, p, showing SmA and SmCalt phases was prepared for mixing (by weight percentage) with an antiferroelectric liquid crystal, (S)-MHPOBC, m, for the study. The binary mixture p/15/m85 using (S)-MHPOBC (85%) as a host doped with achiral material (15%) resulted in a phase sequence SmA-SmC*-SmC*A. The electro-optic response of this mixture in the ferroelectric SmC* phase displayed V-shaped switching, while that in the antiferroelectric SmC*A phase displayed a double hysteresis switching. The mixture p85/m15 possessed SmA* and SmC*A phases; V-shaped switching was found in the antiferroelectric SmC*A phase of this mixture. These optical phenomena implied that a binary mixture containing a larger amount of achiral swallow-tailed material and/or possessing relatively lower polarization favours the occurrence of V-shaped switching in the antiferroelectric phase. The results of this work also suggested that thresholdless V-shaped switching in chiral smectic liquid crystals can be achieved by mixing an achiral swallow-tailed material with an antiferroelectric liquid crystal.  相似文献   

3.
Two series of ferroelectric liquid crystals derived from (S)‐2‐(6‐methoxy‐2‐naphthyl)propionic acid, with non‐fluorinated or semi‐perfluorinated alkanes positioned at a chiral terminal chain, have been synthesized and characterized by differential scanning calorimetry, polarizing optical microscopy and electro‐optical measurements. The non‐fluorinated compounds, 1‐hexyl (S)‐2‐{6‐[4‐(4‐alkanoyloxyphenyl)benzoyloxy]‐2‐napthyl}propionates exhibit rich mesomorphism—the BPII, N*, TGBA*, SmA* and SmC* phases. The fluorinated compounds display only the SmA* and SmC* phases, suggesting that the fluorination promotes the formation of smectic phases. In addition, the SmA* and SmC* phases of the fluorinated compounds have enhanced thermal stability as compared with the corresponding phases of the non‐fluorinated compounds. The spontaneous polarization (P s values) for the non‐fluorinated compounds are higher than those of the fluorinated compounds at any reduced temperature below the SmA*–SmC* transition. The electro‐optical responses measured for these compounds in the ferroelectric phase displayed thresholdless, V‐shaped switching.  相似文献   

4.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

5.
The fluorinated compound, (S)-4′′-(6-perfluoropentanoyoxyhexyl-1-oxy)-2′,3′-difluoro-4-(1-methylheptyloxycarbonyl)-[1,1′:4′,1′′]-terphenyl, which exhibits antiferroelectric SmCA*, ferroelectric SmC* and paraelectric SmA* phases, has been investigated by polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and frequency-dependent dielectric spectroscopy methods. X-ray studies have revealed that the layer thickness remains almost constant in the SmA* phase but within the SmC* and SmCA* phases it decreases with decreasing temperature, a step jump being observed only at the SmA*–SmC* transition. The tilt angle in the SmCA* phase decreases from 22.2° to 19.5°, and in the SmC* phase it decreases from 18.8° to 5.5°. Spontaneous polarisation is found to be quite high and varies between 74.1 and 118.7 nC cm?2. The variation in ε′ and ε′′ with temperature shows a discontinuous change at the transition temperatures. Goldstone mode relaxation is only observed in the ferroelectric and antiferroelectric phases and is found to be of the Cole–Cole type. The soft mode is observed on application of a bias field near the SmC*–SmA* transition. Neither the soft mode nor the anti-phase azimuthal angle fluctuation mode is observed in SmCA*. Rotational viscosity decreases quite rapidly with temperature but in a different manner in the ferroelectric and antiferroelectric phases. Activation energy for this process is found to be 48.14 kJ mol?1 in the SmC* phase.  相似文献   

6.
Novel chiral (S)-(+)-4?-(1-methylalkoxycarbonyl)biphenyl-4-yl 4-[ω-(2,2,3,3,4,4,4-hepta?uoro-butoxy)alkoxy]benzoates and 4-[ω-(2,2,3,3,4,4,4-hepta?uorobutoxy)alkoxy]-2-fluorobenzoates were prepared using different optically active alcohols: (S)-(+)-2-hexanol, (S)-(+)-2-heptanol, (S)-(+)-2-nonanol, (S)-(+)-2-decanol, (S)-(+)-2-undecanol and (S)-(+)-5-methylhexan-2-ol. Properties, such as the sequence of phases, transition temperatures and enthalpies, were tested by polarising optical microscopy and differential scanning calorimetry. Extremely low melting compounds were found (below 10°C) for derivatives of (S)-(+)-2-hexanol. The antiferroelectric smectic phase (SmCA*) with a direct transition from the antiferroelectric to isotropic phase (SmCA*-Iso) was observed, usually for propoxy-(CH2)3- spacing group. Initially, multicomponent mixtures with broad temperature ranges of antiferroelectric phase and direct SmCA*-Iso transition were formulated.  相似文献   

7.
Frequency- and temperature-dependent dielectric and switching parameters of a room temperature tri-component antiferroelectric liquid crystal mixture W-287 have been determined. Dielectric, optical texture and thermodynamic studies show wide room temperature range antiferroelectric SmC*a (?91.1°C to <–25°C) phase in addition to high temperature paraelectric SmA* (?2.6°C) and ferroelectric SmC* (?4.4°C) phases. The dielectric studies carried out in the frequency range of 1–35 MHz under planar anchoring condition of the molecules show five different relaxation modes appearing in the SmA*, SmC* and SmC*a phases. Using Curie–Weiss law fit, ferroelectric SmC* to paraelectric SmA* transition temperature has been found to be 91.8°C. The dielectric response of SmC*a phase exhibits unusually three relaxation modes due to collective as well as individual molecular processes in addition to phason mode in the SmC* phase and amplitudon mode in the SmA* phase. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ?300 nC/cm2, whereas viscosity is moderate. Switching time is of the order of few milli seconds.  相似文献   

8.
Dielectric properties of four recently formulated room temperature multi-component liquid crystalline mixtures with paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmC*A) phases have been studied as a function of temperature and frequency. Under planer anchoring condition, dielectric spectroscopy revealed all the characteristic modes: low frequency PL and high frequency PH mode in SmC*A phase, Goldstone mode (GM) in SmC* phase and soft mode (SM) in SmA* phase. Dielectric behaviour has also been studied under the application of DC bias electric field. With bias electric field, we have been able to study the soft mode dielectric behaviour in the SmC* phase. An unknown high frequency mode (X-mode) with and without bias is also observed in SmC* phase. Dielectric results are explained in the light of generalised Landau theory. The mixtures show very high soft mode electroclinic coefficient in the SmA* phase in addition to fast switching in SmC*A and SmC* phases [30].  相似文献   

9.
For 1-[3-fluoro-4-(1-methylheptyloxycarbonyl)phenyl]-2-[4-2,2,3,3,4,4,4-heptafluorobutoxybutoxy)biphenyl-4-yl]ethane (1F7), built of chiral molecules, results of dielectric measurements of liquid-crystalline and solid phases are presented. Rich polymorphism of liquid-crystalline (SmC*, SmC*A and SmI*A) phases as well as of solid (Cr1 and Cr2) phases were observed down to –130°C. At a frequency range from 0.1 Hz to 3 MHz, the relaxation processes were detected in ferroelectric SmC*, antiferroelectric SmC*A and highly ordered SmI*A smectic phases. The mechanism of complex dynamics (moleculear and collective) was identified with the help of the bias field. Vitrification of conformationally disordered crystal phase Cr2 was found in accordance with calorimetric observations.  相似文献   

10.
Two new chiral series, with benzoate cores and monofluoro-substitution in positions 2 and 3 of the first phenyl ring near the chiral chain, have been synthesized and characterized. The mesomorphic properties have been analysed by optical microscopy, differential scanning calorimetry and electro-optical measurements. The first series (Ic) displays a very rich polymorphism including SmA, SmC*α, SmC*, SmC*FI, SmC*A phases, whereas the second (Ib) does not exhibit the SmC*A phase, and moreover only displays the SmA phase for short alkoxy chains. The effect of the position of the fluoro substituent and the influence of the alkoxy chain length on the mesomorphic behaviour are discussed.  相似文献   

11.
A series of trifluoro-substituted benzoate derivatives: (S)-1-ethylheptyl 4-[4-(4-alkyloxy-3- fluorobenzoyloxy)-3-fluorobenzoyloxy]-2-fluorobenzoates is reported. The short chain members (n = 8 to n = 11) display a direct SmC*A-SmA transition, whereas for longer chains a SmC* phase appears, but no ferrielectric phases are present, and a direct SmCA*-SmC* transition is obtained. The mesomorphic properties were studied by optical microscopy and DSC, and by electro-optical, helical pitch and optical rotatory power measurements. The effect of the number and position of the fluoro substituents, and the influence of the chiral moiety on the mesomorphic behaviour are discussed.  相似文献   

12.
A secondary chiral (R)-(?)-2-alcohol underwent the Mitsunobu reaction with triphenylphosphine, diethyl azodicarboxylate and ethyl 4-hydroxybiphenylcarboxylate, resulting in the desired (S)-(+)-product with high enantiomeric purity (>99% ee), with the chiral branched chain attached to the biphenyl. This method is operationally simple and provides the very important chiral precursor in good yields (62% in dry THF and 72% in dry Et2O). The condensation of the (S)-(+)-acid chloride from this material and a suitable 4-n-alkylthiophenol in toluene in the presence of pyridine or triethylamine furnishes the chiral (S)-(+)-thiobenzoate liquid crystals in good yields (80–83% in pyridine and 65–68% in Et3N). (S)-(+)-4-(1-Methylheptyloxy)biphenyl 4-alkylthiobenzoates are abbreviated (S)-MHOBSn , where n varies from 4 to 10 and denotes the number of carbon atoms in the alkyl chain. DSC, polarizing microscopy and X-ray diffraction showed that the (S)-MHOBSn series possesses a rich phase polymorphism: two highly ordered tilted phases CrG* and SmI*, as well as the ferroelectric smectic C (SmC*) and chiral nematic (N*) phase. In this series, the seldom observed transition between the chiral phases SmI*–SmC* is seen. All the compounds possess stable enantiotropic SmC* and N* phases. The existence of weak intermolecular hydrogen-bonding in (S)-MHOBSn was confirmed by FTIR spectroscopy.  相似文献   

13.
The molecular dynamics of a ferroelectric liquid crystal, denoted ZLL 7/* , is investigated by means of 2H NMR relaxation. The spin–lattice (T1Q and T1Z) and spin–spin (T2) relaxation times of two isotopomers of ZLL 7/* , labeled on the phenyl and biphenyl fragments, are measured and their behavior upon passing from the SmA to the hexatic phase, through the ferroelectric SmC*, antiferroelectric SmC*A, and re‐entrant ferroelectric SmC*re phases, is discussed. A comparison between the measured T2 and T2*, directly related to the experimental linewidth, provides information on the heterogeneity of the system, thus allowing confirmation of previous hypotheses concerning the structural and ordering properties of the SmC*A and SmC*re phases. The possibility to look at different sites of the core of the ZLL 7/* smectogen reveals a peculiar sensitivity of the phenyl moiety with respect to the biphenyl fragment, which may be justified by its vicinity to the chiral centers. Interestingly, the trend of the longitudinal relaxation times is characterized by a minimum that corresponds to the SmC*A and SmC*re phases, which is reproducible for the two isotopomers and at several Larmor frequencies. A quantitative analysis of T1Q and T1Z is performed in the SmA and SmC* phases, for which the narrowing regime approximation is valid. A multifrequency approach is applied to self‐consistently determine the diffusion coefficients for the overall molecular motions, namely spinning and tumbling, and the internal rotations around the para axes of the phenyl and biphenyl fragments. The effect of the magnetic field in unwinding the helical structure of the SmC* phase (for H>9 T) allows observation of a sensitive change in the rotational diffusion coefficients in the frustrated unwound SmC* phase with respect to the SmC* phase.  相似文献   

14.
Two new chiral alcohols, 2(S)‐[2(R)‐methylhexyloxy]propanol ( 5 ) and 2(S)‐[2(S)‐methylhexyloxy]propanol ( 6 ), were prepared from the corresponding propionic acid ethyl ester 1 and 2 in the presence of sodium borohydride. They were used as the chiral moiety for the synthesis of two diastereomeric liquid crystals 7 and 8 . Both of them exhibit the phase sequence I‐SmA‐SmC*‐SmX‐Cr. The mesogenic properties of the (S,S)‐diastereomer 8 are more unique in comparison with those of the (S,R)‐diastereomer 7. It possesses not only lower SmA and SmC* phase transition temperature, 103 °C vs. 112 °C for SmA phase and 31 °C vs. 65 °C for SmC* phase, but wider SmA and SmC* phase range, 40 °C vs. 31 °C for SmA phase and 72 °C vs. 47 °C for SmC* phase. The diastereomer 8 also has a larger Ps value than that of 7, 24 vs. 15 nC cm?2 measured at Tc ‐ T = 10 °C. The difference in these mesogenic properties is discussed by comparing their conformation difference at the molecular part of benzoate.  相似文献   

15.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

16.
S.-L. Wu  C.-Y. Lin 《Liquid crystals》2013,40(12):1575-1580
The chiral swallow-tailed liquid crystals, 1-ethylpropyl (R)-2-[4-(4′-alkoxybiphenylcarbonyloxy)-phenoxy]propionates, EPmPBPP (m = 8?12), were prepared by using chiral (S)-lactic acid with 3-pentanol as starting materials. Mesophases and their corresponding transition temperatures were determined by polarizing microscopic textures and DSC. The results showed that all the chiral materials exhibited enantiotropic BP, N*, TGBA*, SmA*, and SmC* phases. Spontaneous polarization, dielectric constant and electro-optical response for the materials in the ferroelectric SmC* phase were investigated. It was noted that the electro-optical response of transmittance versus applied voltage obtained from the ferroelectric phase of material EPmPBPP (m = 10) displayed V-shaped switching, while that of other materials displayed the typical characteristics of ferroelectric hysteresis switching or U-shaped switching.  相似文献   

17.
《Liquid crystals》2012,39(15):2256-2268
ABSTRACT

Physical properties of the partially fluorinated compound 3F5FPhF, with hockey stick-like molecules, were studied by complementary methods. Apart from the already reported paraelectric SmA*, ferroelectric SmC* and antiferroelectric SmC*A phases, the presence of the smectic C*α subphase in the phase sequence was proved by differential scanning calorimetry, polarising optical microscopy, electro-optic and dielectric spectroscopy methods. The temperature dependence of the smectic layer thickness and correlation length of the lateral short-range order was determined by X-ray diffraction. Based on dielectric measurements three relaxation processes were revealed in the antiferroelectric SmC*A phase (two collective: PL, PH and one molecular: s-process), two collective ones (Goldstone and soft modes) were found both in the ferroelectric SmC* phase and SmC*α subphase while one relaxation process (soft mode) in the paraelectric SmA* phase. The results were compared with that obtained for other structurally similar compounds, and it was shown that even addition of one methylene group to the side chain influences much on the physical properties.  相似文献   

18.
New compound showing a direct SmA*–SmCA* phase transition was synthesised. As far as authors know there are a few pure compounds showing para- and antiferroelectric phases without SmC* between them. Direct current (DC) field applied into a planar-oriented cell induces ferroelectric SmC* phase in an investigated compound. Typical for SmC*, Goldstone mode starts to be detectable. DC field also shifts down the temperature of a SmCA* phase creation. Moreover, modes in the appearing antiferroelectic phase are enhanced by DC field. This paper shows and discusses relations between modes detected in SmA*, SmCA* and SmC* (SmC* phase – nucleated by DC field) phases. Parameters of observed modes are calculated using the Cole–Cole relaxation model and a calculation procedure useful especially for high frequency relaxations (higher than 200 kHz).  相似文献   

19.
The structure of (+)-β-turmerone ((+)- 1a ), a constituent of the rhizomes of Curcuma longa Linn. , and Curcuma xanthorriza, is established as (1′R,6S)-2-methyl-6-(4′-methylenecyclohex-2′-en-1′-yl)hept-2-en-4-one by synthesis of its enantiomer (−)- 1a , and of the corresponding (1′S,6S)-diastereoisomer (+)- 1b as well. In a stereospecific seventeen-step procedure, the monoterpene diols 2a and 2b of well-established configuration are converted into the target compounds (−)- 1a and (+)- 1b , respectively. Moreover, (−)-bisacurol (−)- 3a (II), the enantiomer of another bisabolane sesquiterpene derived from Curcuma xanthorriza, is obtained as a single stereoisomer and shown to be (1′S,6R)-2-methyl-6-(4′-methylenecyclohex-2′-en-1′-yl)hept-2-en-4-ol, the relative configuration at the remaining OH-substituted chiral center C(4) still being unknown.  相似文献   

20.
Low-frequency (LF) (20 Hz to 10 MHz) field response investigations are reported in TSiKN65F series-based chiral liquid crystal compound, C-10, viz., 1-[3?-nitro-4?-S-(2-decyloxy)phenyl]phenyl-4-(1,1,1,3,5,5,5-heptamethyltrisiloxydecyloxy)-3-Fluorobenzoate. Molecular frame with 10-methylene units and a chiral center on one end is connected to the core with 3-phenyl rings. Other end of core connected to biforked trisiloxy chain to promote de Vries phase. Isotropic-smectic-A and smectic-A-smectic-C*deVr transitions are determined by capacitance study. DC field reversal and polarized optical microscopy textures confirmed occurrence of SmC*deVr phase below SmA. Hysteresis is observed in SmC*deVr. Tilt order parameter growth estimated in SmC*deVr phase through β equal to 0.673 agrees with mean field prediction. Relaxation behavior in kilo Hertz region is explained through longitudinal dipole moment μl reorientation. Dynamics studied through LF dielectric relaxation infers dominance of order director fluctuations at few kilohertz. Higher activation energy in de Vries phase infers greater degrees of freedom and additional constraints. Loss ε″(T) exhibited anomalous trend at SmA-to-SmC*deVr interface. Temperature variation of tilt θ(T) is estimated from loss. Loss in de Vries phase gets suppressed by field to infer collective response. Curie–Weiss behavior by γ-exponent ~0.03 infers weaker ferroelectric response in SmC*deVr phase. Loss variation ε″(T) addressed by perturbed bookshelf model reveals marginal layer contraction by <1% in SmC*deVr phase. Estimates of layer shrinkage through R- and f-parameters in SmC*deVr phase confirm the de Vries behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号