首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The spectrum of a finite group is the set of its element orders. Two groups are isospectral whenever they have the same spectra. We consider the classes of finite groups isospectral to the simple symplectic and orthogonal groups B 3(q), C 3(q), and D 4(q). We prove that in the case of even characteristic and q > 2 these groups can be reconstructed from their spectra up to isomorphisms. In the case of odd characteristic we obtain a restriction on the composition structure of groups of this class.  相似文献   

2.
In this paper, a method is developed to study locally hermitian 1-systems of Q(6, q), q even, by associating a kind of flock in PG(4, q) to them. This method is applied to a known locally hermitian 1-system of Q(6, 22e ), which was discovered by Offer as a spread of the hexagon H(22e ). The results concerning this spread appear to be suitable for generalization and enable us to find new classes of 1-systems of Q(6, q), q even. We also prove that a locally hermitian 1-system of Q(6, q), q even, which is not contained in a 5-dimensional subspace, is semi-classical if and only if it belongs to the new classes we describe. Finally, from the new classes of 1-systems arise new classes of semipartial geometries.  相似文献   

3.
4.
In this article, we prove a conjecture of Thompson for an infinite class of simple groups of Lie type E 7(q). More precisely, we show that every finite group G with the properties Z(G) = 1 and cs(G) = cs(E 7(q)) is necessarily isomorphic to E 7(q), where cs(G) and Z(G) are the set of lengths of conjugacy classes of G and the center of G respectively.  相似文献   

5.
Letm2(3,q) be the largest value ofk(k<q 2+1) for which there exists a completek-cap in PG(3,q),q even. In this paper, the known upper bound onm2(3,q) is improved. We also describe a number of intervals, fork, for which there does not exist a completek-cap in PG(3,q),q even. These results are then used to improve the known upper bounds on the number of points of a cap in PG(n, q),q even,n?4.  相似文献   

6.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

7.
We prove that the simple group G 2(q), where 2 < q ≡ ?1(mod 3), is recognizable by the set of its order components. In other words, we prove that if G is a finite group with OC(G) = OC(G 2(q)), then GG 2(q).  相似文献   

8.
We determine the ranks of the permutation representations of the simple groups B l (q), C l (q), and D l (q) on the cosets of the parabolic maximal subgroups.  相似文献   

9.
We consider the space Ext r (A,B) = Ext KG r (A, B), where G = SL(2, q), q = p n , K is an algebraically closed field of characteristic p, A and B are irreducible KG-modules, and r ? 1. Carlson [6] described a basis of Ext r (A, B) in arithmetical terms. However, there are certain difficulties concerning the dimension of such a space. In the present article, we find the dimension of Ext r (A, B) for r = 1, 2 (in the above-mentioned article, Carlson presents the corresponding assertions without proofs; moreover, there are errors in their formulations). As a corollary, we find the dimension of the space H r (G, A), where A is an irreducible KG-module. This result can be used in studying nonsplit extensions of L 2(q).  相似文献   

10.
Let q be a power of 2 greater than 2 and consider the group G = PSL2(q). We choose the maximal subgroups of G isomorphic to the dihedral groups D2(q+1) and D2(q-1) and present the primitive action of G on the right cosets of these two subgroups. We will find the orbits of the point stabilizer in each case and in the case of D2(q-1) we will prove there is an orbit Δ of the point stabilizer Gω, such that Δ ≠ {ω } and whose orbiting under G gives a 1-design with the automorphism group isomorphic to the symmetric group   相似文献   

11.
We prove that if a finite group G has the same set of orders of elements as the group E 8(q), then O 3(G/F(G)) is isomorphic to E 8(q).  相似文献   

12.
We denote by Gn the group of the upper unitriangular matrices over Fq, the finite field with q = pt elements, and r(Gn) the number of conjugacy classes of Gn. In this paper, we obtain the value of r(Gn) modulo (q2 -1)(q -1). We prove the following equalities  相似文献   

13.
We show that if a finite simple group G, isomorphic to PSLn(q) or PSUn(q) where either n ≠ 4 or q is prime or even, acts on a vector space over a field of the defining characteristic of G; then the corresponding semidirect product contains an element whose order is distinct from every element order of G. We infer that the group PSLn(q), n ≠ 4 or q prime or even, is recognizable by spectrum from its covers thus giving a partial positive answer to Problem 14.60 from the Kourovka Notebook.  相似文献   

14.
In this note, we characterize the Grassmann embedding of H(q), q even, as the unique full embedding of H(q) in PG(12, q) for which each ideal line of H(q) is contained in a plane. In particular, we show that no such embedding exists for H(q), with q odd. As a corollary, we can classify all full polarized embeddings of H(q) in PG(12, q) with the property that the lines through any point are contained in a solid; they necessarily are Grassmann embeddings of H(q), with q even.  相似文献   

15.
Let G be a finite group. Let p(G) denote the minimal degree of a faithful permutation representation ofG and let q(G) and c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational and the complex numbers, respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of G. The purpose of this paper is to calculate p(G), q(G), c(G) and r(G) for the group SP(4,q). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
I give an equivalent of the condition of Yanushka and Ronan characterizing the classical generalized hexagon H(q) arising from the group G2(q).  相似文献   

17.
We show that if an ovoid of Q (4,q),q even, admits a flock of conics then that flock must be linear. It follows that an ovoid of PG (3,q),q even, which admits a flock of conics must be an elliptic quadric. This latter result is used to give a characterisation of the classical example Q -(5,q) among the generalized quadrangles T 3( ), where is an ovoid of PG (3q) and q is even, in terms of the geometric configuration of the centres of certain triads.  相似文献   

18.
19.
For q = p r with a prime p ≥ 7 such that ${q \equiv 1}$ or 19 (mod 30), the desarguesian projective plane PG(2, q) of order q has a unique conjugacy class of projectivity groups isomorphic to the alternating group A 6 of degree 6. For a projectivity group ${\Gamma \cong A_6}$ of PG(2, q), we investigate the geometric properties of the (unique) Γ-orbit ${\mathcal{O}}$ of size 90 such that the 1-point stabilizer of Γ in its action on ${\mathcal O}$ is a cyclic group of order 4. Here ${\mathcal O}$ lies either in PG(2, q) or in PG(2, q 2) according as 3 is a square or a non-square element in GF(q). We show that if q ≥ 349 and q ≠ 421, then ${\mathcal O}$ is a 90-arc, which turns out to be complete for q = 349, 409, 529, 601,661. Interestingly, ${\mathcal O}$ is the smallest known complete arc in PG(2,601) and in PG(2,661). Computations are carried out by MAGMA.  相似文献   

20.
《代数通讯》2013,41(3):1253-1270
Abstract

Let G a simple group of type 2 B 2(q) or 2 G 2(q), where q is an odd power of 2 or 3, respectively. The main goal of this paper is to determine the multiplicity free permutation representations of G and A ≤ Aut(G) where A is a subgroup containing a copy of G. Let B be a Borel subgroup of G. If G = 2 B 2(q) we show that there is only one non-trivial multiplicity free permutation representation, namely the representation of G associated to the action on G/B. If G = 2 G 2(q) we show that there are exactly two such non-trivial representations, namely the representations of G associated to the action on G/B and the action on G/M, where M = UC with U the maximal unipotent subgroup of B and C the unique subgroup of index 2 in the maximal split torus of B. The multiplicity free permutation representations of A correspond to the actions on A/H where H is isomorphic to a subgroup containing B if G = 2 B 2(q), and containing M if G = 2 G 2(q). The problem of determining the multiplicity free representations of the finite simple groups is important, for example, in the classification of distance-transitive graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号