首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A new series of 1,4-disubstituted 3-methylpyrazol-5(4H)-one derivatives were synthesized by reacting various substituted aromatic aldehydes with 3-methylpyrazol-5(4H)-one derivatives through Knoevenagel condensation by conventional as well as by exposure to microwave irradiations. After that newly synthesized compounds of 1,4-disubstituted 3-methyl-1H-pyrazol-5-ol were prepared from these derivatives by reduction reaction of sodium borohydride at 0–5 °C. Sixty-four heterocyclic compounds containing a pyrazole moiety were synthesized with good to excellent yields (51 to 91%). Compounds (3d, 3m, 4a, 4b, 4d, and 4g) showed potent antibacterial activity against MSSA (Methicillin-susceptible strains of Staphylococcus aureus) and MRSA (Methicillin-resistant strains of Staphylococcus aureus) with MIC (the minimum inhibitory concentration) ranging between 4 and 16 µg/mL as compared to ciprofloxacin (MIC = 8–16 µg/mL). Compounds (4a, 4h, 4i, and 4l) showed potent antifungal activity against Aspergillus niger with MIC ranging between 16 and 32 µg/mL as compared to fluconazole (MIC = 128 µg/mL). In particular, compound 4a exhibited the strongest activity among the synthesized compounds in both bacterial and fungal strains with MIC ranging between 4 and 16 µg/mL. Furthermore, the nine most active compounds showed a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile in comparison to ciprofloxacin and fluconazole as reference drugs. Molecular docking predicted that DHFR (dihydrofolate reductase) protein from Staphylococcus aureus and NMT (N-myristoyl transferase) protein from Candida albicans are the most suitable targets for the antimicrobial activities of these potent compounds.  相似文献   

2.
A series of 6-(morpholinosulfonyl)quinoxalin-2(1H)-one based hydrazone, hydrazine, and pyrazole moieties were designed, synthesized, and evaluated for their in vitro antimicrobial activity. All the synthesized quinoxaline derivatives were characterized by IR, NMR (1H /13C), and EI MS. The results displayed good to moderate antimicrobial potential against six bacterial, and two fungal standard strains. Among the tested derivatives, six quinoxalin-2(1H)-one derivatives 4a, 7, 8a, 11b, 13, and 16 exhibited a significant antibacterial activity with MIC values (0.97–62.5 µg/mL), and MBC values (1.94–88.8 µg/mL) compared with Tetracycline (MICs = 15.62–62.5 µg/mL, and MBCs = 18.74–93.75 µg/mL), and Amphotericin B (MICs = 12.49–88.8 µg/mL, and MFC = 34.62–65.62 µg/mL). In addition, according to CLSI standards, the most active quinoxalin-2(1H)-one derivatives demonstrated bactericidal and fungicidal behavior. Moreover, the most active quinoxaline derivatives showed a considerable antibacterial activity with bactericidal potential against multi-drug resistance bacteria (MDRB) strains with MIC values ranged between (1.95–15.62 µg/mL), and MBC values (3.31–31.25 µg/mL) near to standard Norfloxacin (MIC = 0.78–3.13 µg/mL, and MBC = 1.4–5.32 µg/mL. Further, in vitro S. aureus DNA gyrase inhibition activity were evaluated for the promising derivatives and displayed potency with IC50 values (10.93 ± 1.81–26.18 ± 1.22 µM) compared with Ciprofloxacin (26.31 ± 1.64 µM). Interestingly, these derivatives revealed as good immunomodulatory agents by a percentage ranging between 82.8 ± 0.37 and 142.4 ± 0.98 %. Finally, some in silico ADME, toxicity prediction, and molecular docking simulation were performed and showed a promising safety profile with good binding mode.  相似文献   

3.
4.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

5.
As trail to overcome on the antimicrobial drug-resistance problems, new functionalized 2-pyridinone and 2-iminochromene derivatives bearing morpholine moiety were designed and synthesized. The 2-pyridinone derivatives were obtained through the cyclization of cyanoacetohydrazone of 4-morpholinylacetophenone with 1,3-dicarbonyl compounds, α,β-unsaturated nitriles or 2-(arylidene)malononitriles. The 2-iminochromene derivatives were synthesized through the ring closure of cyanoacetohydrazonewith salicylaldehyde derivatives. The antibacterial and antifungal activities for the synthesized 2-pyridinone and 2-iminochromene derivatives were investigated. Most of the tested compounds showed moderate activity against P. vulgaris. Compounds 4a,b and 5a,b showed moderate activity against G −ve bacteria. All iminochromene derivatives showed moderate activity against C. albicans. Compound 8c was the most active compound.  相似文献   

6.
Derivatives (115) of steroidal and indole class were synthesized using different strategies. These compounds were characterized by 1H NMR spectroscopy and EI-MS, respectively. The synthetic derivatives were examined for their cytotoxic effects on human adenocarcinoma cells (HCT-116) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphometric analysis. The cytotoxic effects of all the compounds were observed after 48 h treatment and it was found that out of fifteen, four compounds 1, 2, 3, and 14 showed inhibitory action on the cancer cells. We have calculated the IC50 values for compounds 1, 2, 3, and 14 which were 22.50 µg/mL, 55.65 µg/mL, 21.35 µg/mL and 58.50 µg/mL, respectively. The compounds 3 (IC50 = 21.35 µg/mL) and 1 (IC50 = 22.50 µg/mL) showed highest inhibitory activities as compared to compounds 2 (IC50 = 55.65 µg/mL) and 14 (IC50 = 58.50 µg/mL). These results suggested that steroidal thiazole and indole derivatives are potent lead molecules having strong anti-cancer proliferative capabilities.  相似文献   

7.
《Arabian Journal of Chemistry》2020,13(12):8750-8757
Two series of tetrazole derivatives of the type N-(1H-tetrazol-5-yl)-1-(aryl)methanimine (101106) and 1-(4-alkoxyphenyl)-N-(1H-tetrazol-5-yl)methanimine (107–111) were synthesized and characterized via conventional tools of analysis (elemental analysis, FT-IR and 1H NMR spectroscopy). These two synthesized series were biologically evaluated for their potentials against some microbial biofilm causing strains (micro bio-foulants). Biological activities were evaluated by MIC values and cell viability percentages of them. In case of compounds (107–111), 107 was the most potent antimicrobial one, where its MIC values were 10.666667 µg/ml; 12.82222 µg/ml and 21.43666 µg/ml for Staphylococcus aureus, Escherichia coli and Candida albicans respectively, whereas compound 106, (of group 101106), MIC values were 16 µg/ml for all the tested microorganisms. Viability assay showed that 107 activity percentages were 96.99456%, 92.32886% and 89.09558% against Gm +ve bacteria, Gm −ve bacteria and yeast respectively, whereas 106 activity percentages were 95.255569%, 90.204675% and 86.710956% against Gm +ve bacteria, Gm −ve bacteria and yeast respectively. Two antimicrobial mode of actions were proposed and discussed depending on the two evaluated tetrazole groups.  相似文献   

8.
Increasing instances of antimicrobial drug resistance and Inflammation-mediated disorders requires the design and synthesis of new small-molecules with higher affinity and specificity for their potential targets to serve as antibiotics or anti-inflammatory drugs, respectively. The current study presents the synthesis of a series of chalcones, 3(ah) by the reaction of 3-methylthiophene-2-carbaldehyde, 1 and acetophenones, 2(ah) by Claisen–Schmidt approach. The chalcones were efficiently transformed into thienyl-pyrazolines, 5(ah) by their reaction with thiosemicarbazide hydrochloride, 4 in the presence of Amberlyst-15 as a catalyst in acetonitrile at room temperature. Alternatively, the compounds 5(ah) were prepared by conventional method using acetic acid (40%) medium. Structures were characterized by spectral and single crystal X-ray diffraction studies. Preliminary assessment of the anti-inflammatory properties of the compounds showed that, amongst the series, compounds 5b and 5c have excellent anti-inflammatory activities. Further, compound 5c showed excellent activity against Escherichia coli (MIC, 15 µg/mL), Bacillus subtilis (MIC, 20 µg/mL), Aspergillus niger (MIC, 20 µg/mL), and Aspergillus flavus (MIC 15 µg/mL), respectively. Compounds 5a and 5b were also found to be active against the tested microorganisms.  相似文献   

9.
The highly versatile, 2-chloroacetamido-5-(4-chlorophenylazo)thiazole (2) was synthesized and used as a precursor for the production of five 2-(2-substitutedacetamido)thiazole compounds by its reaction with different types of nucleophiles such as piperidine, morpholine, 2-mercaptobenzothiazole, 4,6-dimethyl-2-mercaptonicotinonitrile and 6-amino-2-mercapto pyrimidin-4-ol. DFT/B3LYP calculations of the isolated derivatives showed that their HOMO consisted mainly of the non-bonding lone pairs of heteroatoms while LUMO were π*-orbitals of the 2-acetamido-5-(4-chlorophenylazo)thiazole moiety. Despite the close energy gap values (ΔEH-L) of the investigated compounds, the data showed that thiazole-pyrimidine derivative 8 has the highest energy gap while the thiazole-piperidine derivative 3a was the lowest. The DPPH antioxidant activity examination results, in comparison to BHT (Butylated hydroxytoluene) and Ascorbic acid as controls, showed that sulfide compounds 4, 6, and 8 had more respectable inhibitions (IC50 = 24.17–32.26 µg/mL). Moreover, the molecular docking studies of the synthesized derivatives using protein (PDB Code-2Y9X) indicated that the sulfide compounds 4, 6, and 8 had a superior binding score, ?6.3934, ?6.5735, and ?7.2835 kcal/mol, respectively. The docking results were satisfactory, and they matched the antioxidant investigation's conclusions.  相似文献   

10.
Two series [18 (series-1) and 916 (series-2)] of quinoline conjugated 2-azetidinones were evaluated for their antiproliferative potential against breast cancer cell lines MCF7 and MDA-MB-231 respectively. All the compounds were more active towards against MCF7 than MDA-MB-231 cancer cell lines and few compounds activity was more than the standard erlotinib. For instance, the compound 16 of series-2 bearing electron withdrawing fluorine atom at the 6th position of quinoline ring showed promising activity with MIC values of 2.33 ± 0.19 µg/mL for MCF7 and 4.19 ± 0.22 µg/mL for MDA-MB-231 cells, respectively. In a similar way, the compounds 8 and 14 containing fluorine and chlorine substituents respectively, and located at position-6 of quinoline scaffold showed better activity than erlotinib. The ability of target compounds to inhibit EGFR tyrosine kinase, one of the key enzymes involved in breast carcinomas was evaluated by in vitro enzymatic assay and it was found that the compound 8 had close inhibitory activity to erlotinib with an %inhibition of 97.1 ± 0.08 at 10 µM. The compounds showed selective toxicity on the cancer cell lines as their IC50 values are high against the human normal liver cell line-LO2. Further, the docking studies of the promising compounds 8, 14 and 16 revealed the important molecular interactions with the EGFR kinase enzyme (PDB ID: 6S9B). The physicochemical and pharmacokinetic properties of the most active compounds were predicted using Swiss ADME and pkCSM tools respectively. The most promising compounds arisen from the present study can be considered as prospective lead molecules for anticancer activity against breast carcinoma.  相似文献   

11.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

12.
For thousands of years Pueraria thomsonii Benth has been used to treat a number of diseases in traditional Chinese pharmacopeia. Despite these uses, there is still insufficient information on its biological activity and chemical composition. In this respect, the in vitro callus culture of P. thomsonii was subjected to identify anticancer and antibacterial compounds. Based on significant preliminary cytotoxicity and antibacterial activities; the chemical investigation led to the isolation of isoflavonoids, coumaric acid derivative and dihydroxyflavanone-type of compounds viz., daidzin (1), puerarin (2), biochanin A (3), daidzein (4), p-coumaric acid ethyl ester (5) and liquiritigenin (6), respectively. These compounds were tested for their cytotoxicity and antibacterial activities. Among them, p-coumaric acid ethyl ester (5) exhibited significant cytotoxicity with GI50 values of 14.73, 15.64 and 20.88 μM/mL against 4T1, NC1-H1975 and A549, respectively; the other isoflavones and aflavonoid showed moderate to weak activities. Moreover, p-coumaric acid ethyl ester (5) inhibited the growth of K. pneumonia, MRSE and MRSA at very low MIC values of 6.01, 12.01 µg/mL 24.02, respectively. On the other hand compounds biochanin A (3) and liquiritigenin (6) showed moderate antibacterial activity. Because of the potential anticancer and antibacterial activities of bioactive compounds from P. thomsonii, they can be used to treat various cancer and emerging bacterial infections.  相似文献   

13.
The present article deals with the synthesis of novel nano-sized fluorinated thiazoles and studying their anticancer potentiality. The targeted azoles could be accessed via trifluoro-methylated thiosemicarbazone (3) prepared by reaction of with thiosemicarbazide in acidic solution of ethanol. The latter a fluorinated building block (3) have been reacted with appropriate derivatives of a-halo compounds namely, N-aryl 2-oxopropane-hydrazonoyl chlorides 4a-f using dioxane containing TEA as base catalyst. Also, the reaction between N-(4-(1-(2-carbamothioylhydrazineylidene)ethyl)phenyl)-2,2,2-trifluoroacetamide (3) and chloroacetonitrile 8 under the same experimental conditions furnished the corresponding amino thiazole derivative 11. In the same manner the base catalyzed cyclocondensation reaction between N-(4-(1-(2-carbamothioylhydrazineylidene)ethyl)phenyl)-2,2,2-trifluoroacetamide (3) and phenacyl bromide derivatives 12a-d afforded the corresponding thiazoles 13a-d in good yield. The structure of all synthesized thiazole derivatives as well as their mechanistic pathways were studied based on spectral data analysis and physical characteristics. The nanosized products were confirmed by using XRD analysis. Moreover, twelve samples were submitted for evaluation of their cytotoxicity activities against MDA-MB-231 (breast cancer cell) using colorimetric MTT assay, in comparison with Cisplatin standard drug. Two nano-sized thiosemicarbazone derivative 3 and the thiazole derivative 7c showed potent activity with IC50 = 7.7 and 2.97 µg/ml, respectively in compared with the IC50 = 4.33 µg/ml of cisplatin. The nanosized thiazole derivative 7c was more potent than cisplatin. Also, two thiazole derivatives 13b and 7b showed good activity with IC50 = 13.4 and 14.9 µg/ml. In addition, the molecular docking studies have been achieved using 4hy0, (X-chromosome-linked- inhibitor of apoptosis protein; (XIAP)).  相似文献   

14.
The phytochemical investigation on the chemical constituents of dichloromethane-methanol (1:1) stem-bark extract of Cola lateritia K. Schum. (Sterculiaceae) led to the isolation and characterization of five pentacyclic triterpenoids, one fatty acid and two phytosteroids. The compounds were identified as heptadecanoic acid (1), maslinic acid (2), betulinic acid (3), lupenone (4), lupeol (5), friedelin (6), β-stigmasterol (7) and ß-sitosterol-3-O-ß-D-glucoside (8). Their structures were determined by NMR analysis (1H, 13C, DEPT-135, COSY, HMBC and HSQC), high-resolution mass spectrometry (HR-ESI-MS) and comparisons with published data in the literature. This work, to the best of our knowledge, is the first isolation and identification of these compounds in pure forms from Cola lateritia. Also, compounds 13 are reported for the first time from Cola genus. In vitro antibacterial activity of the isolated compounds (18) and the crude extract were evaluated against Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Proteus vulgaris, Klebsiella pneumonia, Escherichia coli, Proteus mirabilis and Klebsiella aerogenes with streptomycin, nalidixic acid and ampicillin as standard antibacterial drugs. Compound 2 was active against E. faecalis (MIC = 18.5 µg/mL), and it was 6.9 and 28 times lower and active than that of streptomycin (MIC 128 µg/mL) and nalidixic acid (MIC > 512 µg/mL) respectively. All the isolated compounds and crude extract showed significant activities against the tested bacterial strains.  相似文献   

15.
The aim of producing new biologically active compounds lead to the synthesis of some Cu(I) complexes of general formula [Cu(C2H5CN)4][A] and [Cu(C5H5N)4][A] (14) {where A: counter anion = B(C6F5)4 and B{C6H3(m-CF3)2}4} from the reaction of CuCl and silver salt of the corresponding counter anion. The complexes were characterized using elemental analysis, 1H NMR, 11B NMR, FT-IR Spectroscopy, UV–visible spectroscopy and thermo-gravimetric analysis (TGA). The antibacterial activities of all complexes are evaluated by the minimal inhibitory concentration (MIC), using the micro-broth dilution method, against eight bacteria (Gram-negative and Gram-positive), each with fresh clinical isolates. The MIC results were compared with those of Oxytetracycline agent as a positive control. In most cases, the compounds show broad-spectrum activities that were either, more active, or equipotent to, the antibiotic agent in the comparison tests. Complex 4 showed the greatest activity against Proteus mirabilis (Gram- negative) with a minimum inhibitory concentration (MIC) of 8 µg/mL, while complexes 2 and 3 showed the lowest activity against Pseudomonas aeruginosa (Gram-negative) and against Staphylococcus aureus (Gram-positive) with a concentration of 512 µg/mL.  相似文献   

16.
Five new polyketides including two benzopyranones (1 and 2), one isochroman (3) and two anthraquinone-citrinin derivatives (4 and 5) were isolated from the sea fan-derived fungus Penicillium citrinum PSU-F51 together with thirteen known compounds. The structures were determined by spectroscopic methods. The anthraquinone-citrinin derivatives are rare natural products. Compound 4 displayed moderate antibacterial activity against both Staphylococcus aureus and methicillin-resistant S. aureus with equal MIC values of 16 μg/mL, while the known coniochaetone A displayed moderate antifungal activity against Candida albicans with MIC value of 16 μg/mL.  相似文献   

17.
A series of twenty new chloropyrazine conjugated benzothiazepines (2241) have been synthesized with 58%–95% yields. The compounds were characterized by using different spectroscopic techniques including FT-IR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. The synthesized compounds (2241) and their precursor chalcones (221) were evaluated for antitubercular and cytotoxic activities. Additionally, compounds 2241 were also tested for antimicrobial activity. Among the chalcone series (221), compounds 7 and 14 showed significant antitubercular activities (MICs 25.51 and 23.89 µM, respectively), whereas among benzothiazepines (2241), compounds 27 and 34 displayed significant antimicrobial (MICs 38.02 µM, 19.01 µM) and antitubercular (MIC 18.10 µM) activities. Compounds 7 and 41 displayed cytotoxic activities with IC50 of 46.03 ± 1 and 35.10 ± 2 µM respectively. All the compounds were evaluated for cytotoxic activity on normal human liver cell lines (L02) and found to be relatively less selective towards this cell line. The most active compounds identified through this study could be considered as potential leads for the development of drugs with possible antimicrobial, antitubercular, and cytotoxic activities.  相似文献   

18.
To find out effective anticancer compounds we synthesized (130) derivatives of 4-isopropylbenzoylhydrazone and evaluated for anticancer potential. The compounds 3, 9, 12, 23, 26 and 28 showed better activities ranging (0.39–1.1 µg/ml) than the standard (1.53 ± 0.01 µg/ml). In line with this, compounds 2, 6, 24, 25 and 29 exhibited better activities compared to the second standard (5FU 4.60 ± 0.01 µg/ml). The best molecular docked complex between the BRCA1 structure and the 130 derivatives were analyzed based on the Glide docked score and binding orientation for both the SP and XP mode. The 2D-QSAR analysis reflected a significant correlation between the experimental and the predicted biological activities. The above-mentioned compounds were also assessed by various spectroscopic techniques.  相似文献   

19.
A series of chalcone derivatives (T1-T23) containing pyrimidine were synthesized, characterized, and assessed for their antiviral activity against tobacco mosaic virus (TMV) activities. Most target compounds displayed better antiviral activities against TMV than commercial ningnanmycin. Among them, the EC50 value of curative activities of compounds T1, T7, T9 and T19 (219.2, 228.2, 279.9 and 234.9 μg/mL, respectively) were superior to that of ningnanmycin (320.1 μg/mL). In addtion, the EC50 value of protective activities of compounds T5, T9, T19 and T23 (235.0, 220.0, 199.5 and 187.2 μg/mL, respectively) were superior to that of ningnanmycin (307.4 μg/mL). Then, the antiviral mechanism of T19 and TMV coat protein (TMV-CP) was preliminarily investigated by microscale thermophoresis (MST) and molecular docking technology. The results showed that T19 had a strong binding affinity for TMV coat protein, and its dissociation constant (Kd) was 0.00310 ± 0.000916 μM, which was superior to ningnanmycin(0.165 ± 0.0799 μM). This study suggests that chalcone derivatives containing pyrimidine could be used as novel antiviral agents for controlling the plant viruses.  相似文献   

20.
A series of thirty-six novel 5-(2-(4-(benzo[d]isoxazol-3-yl)piperazin-1-yl)acetyl)indolin-2-one and 5-(2-(4-substitutedpiperazin-1-yl)acetyl)indolin-2-one analogues were synthesized, characterized and screened for their in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain. These compounds exhibited minimum inhibitory concentration between 1.56 and 50 μg/mL. Among these derivatives, compounds 10c, 10d, 10j, 10o and 10v (MIC 6.25 μg/mL) displayed moderate activity, while compounds 10e, 10l, 10q, 10w,10x, 12d, 12e and 12i (MIC 3.12 μg/mL) showed good anti-tubercular activity and compounds 10f, 10k, 10p, 10r, 12f, 12j and 12k (MIC 1.56 μg/mL) exhibited excellent anti-tubercular activity. In addition, MTT assay was accomplished on the active analogues of the series against mouse macrophage (RAW 264.7) cells to evaluate the cytotoxic effect of the newly synthesized compounds and selectivity index of the compounds was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号