首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a new and facile method for synthesizing 3D platinum nanoflowers (Pt Nfs) on a scratched silicon substrate by electroless galvanic displacement and discuss the applications of the Pt Nfs in surface‐assisted laser desorption/ionization‐mass spectrometry (SALDI‐MS). Surface scratching of n‐type silicon is essential to induce Pt Nf growth on a silicon substrate (to obtain a Pt Nf silicon hybrid plate) by the galvanic displacement reaction. The Pt Nf silicon hybrid plate showed excellent SALDI activity in terms of the efficient generation of protonated molecular ions in the absence of a citrate buffer. We propose that the acidity of the Si? OH moieties on silicon increases because of the electron‐withdrawing nature of the Pt Nfs; hence, proton transfer from the Si? OH groups to the analyte molecules is enhanced, and finally, thermal desorption of the analyte ions from the surface occurs. Signal enhancement was observed for protonated molecular ions produced from a titania nanotube array (TNA) substrate on which Pt nanoparticles had been photochemically deposited. Moreover, surface modification of the Pt Nf silicon hybrid plate by perfluorodecyltrichlorosilane (FDTS) (to obtain an FDTS‐Pt Nf silicon hybrid plate) was found to facilitate soft SALDI of labile compounds. More interestingly, the FDTS‐Pt Nf silicon hybrid plate acts 1) as a high‐affinity substrate for phosphopeptides and 2) as a SALDI substrate. The feasibility of using the FDTS‐Pt Nf silicon hybrid plate for SALDI‐MS has been demonstrated by using a β‐casein digest and various analytes, including small molecules, peptides, phosphopeptides, phospholipids, carbohydrates, and synthetic polymers. The hybridization of Pt Nfs with a scratched silicon substrate has been found to be important for achieving excellent SALDI activity.  相似文献   

2.
Surface-assisted laser desorption/ionization (SALDI) substrates have been fabricated using nanospiked polyurethane (PU) substrates that are replicated by a low-cost soft nanolithography method from silicon nanospike structures formed with femtosecond laser irradiations. The strongest mass spectrometry (MS) signal of Angiotensin II was obtained on 45-nm Au-coated nanospiked PU substrates. The effective ionization appears to be due to surface plasmon excitation. Such low-cost and identical SALDI substrates can be used for MS analysis of various molecules with high reproducibility.  相似文献   

3.
The pyrolytic highly oriented graphite polymer film (PGS) was first employed to analyze low‐mass analytes in environmental analysis by surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS). PGS is a synthetic uniform and highly oriented graphite polymer film with high thermal anisotropic conductivity. We have found that negative ion mode SALDI‐MS using oxidized PGS (PGS‐SALDI‐MS) can be used to detect [M–H]? ions from perfluorooctanoic acid (PFOA) and other perfluoroalkylcarboxylic acids when the PGS surface is modified with the cationic polymer polyethyleneimine (PEI). The signal intensity of PFOA when employing the PEI modification showed a ten‐fold increase over that obtained from desorption/ionization on porous silicon (DIOS). PFOA was quantified using PGS‐SALDI‐MS and the calibration curve showed a wide linear dynamic range of response (20–1000 ppb). The combination of atmospheric pressure ionization and PGS (AP‐PGS‐SALDI) showed greater signal intensity than vacuum PGS‐SALDI for deprotonated PFOA. Several other environmentally important chemicals, including perfluoroalkylsulfonic acid, pentachlorophenol, bisphenol A, 4‐hydroxy‐2‐chlorobiphenyl, and benzo[a]pyrene, were also successfully used to evaluate PGS‐SALDI‐MS. In addition, we found that nonafluoro‐1‐butanesulfonic acid was able to produce protonated peptides in positive ion PGS‐SALDI‐MS, but that perfluoropentanoic acid and trifluoroacetic acid were not. It is suggested that perfluoroalkylsulfonic acids are better protonating agents than perfluoroalkylcarboxylic acids in SALDI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range.  相似文献   

5.
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of “coffee rings” in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the “coffee-ring effect” in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a “hidden coffee-ring effect” where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation.  相似文献   

6.
The effect of surface activity in surface-assisted laser desorption/ionization (SALDI) mass spectrometry was examined. Several surfactants, including p-tolunensulfonic acid (PTSA), sodium dodecyl sulfate and alkyltrimethylammonium bromide, were used as analytes or additives in the SALDI matrix to demonstrate the surface activity effect. The experimental results demonstrate that analytes that have good surface activity have good sensitivity. Adding suitable amounts of surfactants to the SALDI matrix can dramatically enhance the sensitivity of analytes lacking surface activity. We propose that the enhancement of analyte signals is due to the ionic interaction between ionic surfactants and analytes because non-ionic surfactant additives in the SALDI matrix do not affect the analyte signals. The detection limit of methylephedrine can be as low as 100 pg in the SALDI analysis of 0.5 M PTSA additive in the SALDI matrix. Although other surfactants can also be used as matrix additives to enhance the analyte signal, they do not improve the ion abundance as much as PTSA does.  相似文献   

7.
We have employed mixtures of two differently sized (average diameters: 3.5 and 14 nm) gold nanoparticles (Au NPs) as selective probes and matrices for the determination of aminothiols using surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS). When using 38 and 150 pM solutions of the 3.5‐ and 14‐nm Au NPs, respectively, as the probe and matrix, SALDI‐MS provided limits of detection (signal‐to‐noise ratio = 3) of 2, 20, and 44 nM for 1.0 mL solutions of glutathione (GSH), cysteine (Cys), and homocysteine, respectively. The signal intensities of these analytes varied by less than 20% for SALDI‐MS analyses recorded over 50 sample spots; in contrast, they varied by as much as 60% when using a conventional matrix (2,5‐dihydroxybenzoic acid). We validated the practicality of this approach – with its advantages of sensitivity, reproducibility, rapidity, and simplicity – through the analysis of GSH in MCF‐7 cell lysates and Cys in plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A rotating ball interface for surface‐assisted laser desorption/ionization (SALDI) mass spectrometry was designed and tested. One side of the ball was exposed to atmospheric pressure and the other to the vacuum in a time‐of‐flight mass spectrometer. Analytes (arginine, atenolol, reserpine, tofisopam, and chloropyramine) were applied using electrospray to a silicon substrate on the atmospheric side, the ball was rotated 180°, and the analyte was desorbed on the vacuum side using a pulsed, 200 Hz, 355 nm laser. In order to increase the desorption area, the laser focus was scanned over the substrate in a raster pattern repeated once every second. The design allows for rapid sample throughout with a sample turn‐around time as short as 5 s. Newly produced porous silicon substrates initially yielded very low ion signals, and they required several hundred laser shots to attain maximum sensitivity. In contrast, amorphous silicon did not require such ‘activation’. Quantitative analysis showed a sample‐to‐sample reproducibility of about 10%. The sensitivities with model analytes were in the 1000 to 10 000 ions/fmole range and detection limits in the low fg range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A novel means of combining thin-layer chromatography (TLC) with laser desorption/ionization mass spectrometry using a liquid matrix is proposed. Surface-assisted laser desorption/ionization (SALDI) mass spectrometry, which uses a mixture of a micrometer-sized carbon powder (graphite or activated carbon, the SALDI solid) and 15% sucrose/glycerol, dissolved in an equal volume of methanol (SALDI liquid) as a SALDI matrix, is used for laser desorption mass analysis. The ablation of carbon powder from a pencil drawing was used as an alternative to the SALDI solid. The liquid matrix resembled that used in a conventional SALDI matrix system. A line was drawn before separation with a pencil on the track of the sample developed on the TLC plate. After TLC separation, approximately 0.1 microl of SALDI liquid was directly applied to the chromatographic spots on the TLC plate. Porphyrins were used to demonstrate this combination owing to the visible colors of this type of compound. The analyte signal can be easily detected by irradiating the laser along the pencil line on the TLC plate. An additive, p-toluenesulfonic acid, is added to the SALDI liquid to enhance the signal's intensity. This additive dramatically improves the signal-to-noise ratio. A detection limit of approximately 500 pg is demonstrated for porphines, which is 50 times better than that corresponding to conventional TLC SALDI.  相似文献   

10.
We have developed a method for the determination of melamine (MEL), ammeline (AMN), and ammelide (AMD) by surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) using gold nanoparticles (Au NPs). The major peaks for MEL, AMN, and AMD at m/z 127.07, 128.05, and 129.04 are assigned to the [MEL + H]+, [AMN + H]+, and [AMD + H]+ ions. Because the three tested compounds adsorb weakly onto the surfaces of the Au NPs through Au–N bonding, they can be easily concentrated from complex samples by applying a simple trapping/centrifugation process. The SALDI‐MS method provides limits of detection of 5, 10, and 300 nM for MEL, AMN, and AMD, respectively, at a signal‐to‐noise ratio of 3. The signal variation for 150‐shot average spectra of the three analytes within the same spot was 15%, and the batch‐to‐batch variation was 20%. We have validated the practicality of this approach by the analysis of these three analytes in infant formula and grain powder. This simple and rapid SALDI‐MS approach holds great potential for screening of MEL in foods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Titania nanotube arrays (NTA) generated from anodizing processes are tested as the substrate for surface-assisted laser desorption/ionization mass spectrometry (SALDI MS). The background generated from titania NTA is very low, making the approach suitable for the analysis of small molecules. The upper detectable mass is approximately 29 kDa. Homogeneous sample deposition leads to good shot-to-shot reproducibility and suitability for quantitative analysis. Additionally, phosphopeptides can be selectively trapped on the titania NTA substrate, as illustrated by simply depositing a tryptic digest of beta-casein followed by titania NTA SALDI MS analysis. The detection limit for small organics and peptides is in low fmol.  相似文献   

12.
Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip systems, especially in a point-of-care setting. Conventional microfluidic devices are usually based on continuous-flow in microchannels, and offer little flexibility in terms of reconfigurability and scalability. Handling of real physiological samples has also been a major challenge in these devices. We present an alternative paradigm--a fully integrated and reconfigurable droplet-based "digital" microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. The microdroplets, which act as solution-phase reaction chambers, are manipulated using the electrowetting effect. Reliable and repeatable high-speed transport of microdroplets of human whole blood, serum, plasma, urine, saliva, sweat and tear, is demonstrated to establish the basic compatibility of these physiological fluids with the electrowetting platform. We further performed a colorimetric enzymatic glucose assay on serum, plasma, urine, and saliva, to show the feasibility of performing bioassays on real samples in our system. The concentrations obtained compare well with those obtained using a reference method, except for urine, where there is a significant difference due to interference by uric acid. A lab-on-a-chip architecture, integrating previously developed digital microfluidic components, is proposed for integrated and automated analysis of multiple analytes on a monolithic device. The lab-on-a-chip integrates sample injection, on-chip reservoirs, droplet formation structures, fluidic pathways, mixing areas and optical detection sites, on the same substrate. The pipelined operation of two glucose assays is shown on a prototype digital microfluidic lab-on-chip, as a proof-of-concept.  相似文献   

13.
Measuring average quantities in complex mixtures can be challenging for mass spectrometry, as it requires ionization and detection with nearly equivalent cross-section for all components, minimal matrix effect, and suppressed signal from fragments and aggregates. Fragments and aggregates are particularly troublesome for complex mixtures, where they can be incorrectly assigned as parent ions. Here we study fragmentation and aggregation in six aromatic model compounds as well as petroleum asphaltenes (a naturally occurring complex mixture) using two laser-based ionization techniques: surface assisted laser desorption ionization (SALDI), in which a single laser desorbs and ionizes solid analytes; and laser ionization laser desorption mass spectrometry (L2MS), in which desorption and ionization are separated spatially and temporally with independent lasers. Model compounds studied include molecules commonly used as matrices in single laser ionization techniques such as matrix assisted laser desorption ionization (MALDI). We find significant fragmentation and aggregation in SALDI, such that individual fragment and aggregate peaks are typically more intense than the parent peak. These fragment and aggregate peaks are expected in MALDI experiments employing these compounds as matrices. On the other hand, we observe no aggregation and only minimal fragmentation in L2MS. These results highlight some advantages of L2MS for analysis of complex mixtures such as asphaltenes.
Figure
?  相似文献   

14.
The effects of nanowire (NW) length on surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) of small molecules were investigated using ZnO NWs of 50 nm diameter with a broad range of lengths ranging from 25 to 1600 nm. Characterization of the ZnO NWs revealed that the length was the only parameter that varied in this study, while other properties of the NWs remained essentially the same as the bulk properties. Experiments on SALDI efficiency exhibited that the SALDI processes on NWs have a certain length window. In the present case of ZnO NWs, the SALDI efficiency was found to be enhanced on the nanowires of 250 nm length, corresponding to an aspect ratio of 5. The roles of NW length in the SALDI processes were discussed from the viewpoint of efficient energy-transfer media as well as physical obstacles screening laser irradiation and preventing the escape of nascent ions from NW surfaces. The existence of the length window may provide valuable insight for tailoring new nanostructures for efficient SALDI of small molecules.  相似文献   

15.
Silane-immobilized magnetic iron oxide particles were used as the assisting material in surface-assisted laser desorption/ionization (SALDI) mass spectrometric analysis. This approach can be used to analyze small proteins and peptides. The upper detectable mass range is approximately 16 kDa. The detection limit for peptides is about 20 fmol. Silanized iron oxide particles with negatively charged functionalities can also be used as the affinity probes to selectively trap oppositely charged species from sample solutions by adjusting the pH of the solution. A tryptic digest product of cytochrome C at a concentration as low as 10 nM can be enriched by the particles and directly analyzed by iron oxide SALDI MS without the need for elution steps. Affinity-based mass spectrometry using the bifunctional silanized magnetic iron oxide particles as the SALDI matrix and concentrating probe is demonstrated in this study.  相似文献   

16.
We describe here the use of a hybrid ionization approach, matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS) in bioimaging. ME-SALDI combines the strengths of traditional matrix-assisted laser desorption/ionization (MALDI) and SALDI and enables successful MS imaging of low-mass species with improved detection sensitivity. Using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as the MS standard, MS performances of MALDI, SALDI, and ME-SALDI are systematically compared. The analyte desorption and ionization mechanism in ME-SALDI is qualitatively speculated based on the observation of significantly reduced matrix background and improved survival yields of molecular ions. Improvements in detection sensitivity of low-mass species using ME-SALDI over MALDI in imaging are demonstrated with mouse heart and brain tissues.  相似文献   

17.
Surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) is applied to provide strong evidence for the chemical reactions of functionalized gold nanoparticles (Au NPs) with analytes – Hg2+ ions induced MPA?Au NPs aggregation in the presence of 2,6‐pyridinedicarboxylic acid (PDCA) and H2O2 induced fluorescence quenching of 11‐MUA?Au NDs. PDCA‐Hg2+‐MPA coordination is responsible for Au NPs aggregation, while the formation of 11‐MUA disulfide compounds that release into the bulk solution is responsible for H2O2‐induced fluorescence quenching. In addition to providing information about the chemical structures, SALDI‐MS is also selective and sensitive for the detection of Hg2+ ions and H2O2. The limits of detection (LODs) for Hg2+ ions and H2O2 by SALDI‐MS were 300 nM and 250 µM, respectively. The spot‐to‐spot variations in the two studies were both less than 18% (50 sample spots). Our results reveal that SALDI‐MS can be used to study analyte‐induced changes in the surface properties of nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The structure-specific fragmentation of gas-phase ions in tandem mass spectrometry among other techniques provides an efficient analytical method for confirming unknown analytes or for elucidating chemical structures. Using concentration-dependent UV-absorbing matrix-functionalized magnetic nanoparticles and matrix-assisted laser desorption-ionization mass spectrometry (MALDI MS), we developed a single-step pseudo-MS/MS approach for tunable ionization and fragmentation to facilitate structure determination. Without chemical derivatization, we have demonstrated that this approach successfully distinguished isomeric sets of di-, tri- and tetrasaccharides. Low concentration of nanomatrix provided an enhanced signal for accurate mass determination of the intact molecular ions of analytes present in the sample. In contrast, high concentration of nanomatrix induced extensive and unique fragmentation, including high-energy facile bond breakage (A- and X-type cross-ring cleavages), which facilitated the linkage and sequence characterization of oligosaccharides without conventional tandem mass spectrometric instrumentation. The practicality of this approach for complex sample analysis was evaluated by an oligosaccharide mixture, wherein molecular ions are unambiguously observed and signature product ions are distinguishable enough for molecular identification and isomer differentiation by this simple tunable approach. By probing the roles of the multilayer nanomatrix components: matrix (energy absorption), silane-coating (energy pooling and dissipation) and core Fe3O4 (fragmentation), a plausible energy transfer mechanism was proposed based on a computational study and photoelectron experiments. The differentiation of tri- and tetra-oligosaccharide shown in this study not only demonstrated the first step toward glycan characterization by nanoparticle-assisted MALDI-MS, but also shed some insight on the nanoparticle-mediated energy transfer dynamics behind our approach.  相似文献   

19.
Preliminary conversion of nonpolar organic sulfides into sulfonium salts was proposed for their study and analysis by laser desorption/ionization (MALDI and SALDI) and electrospray/ionization (ESI) mass spectrometry. General possibilities of the methodology proposed were demonstrated on examples of dialkyl sulfides, substituted thiacyclanes, dibenzothiophene, and methionine methyl ester. Various alkyl and aralkyl halides, as well as trimethyl- and triethyloxonium salts were tested as alkylating agents. S-alkylation was shown to proceed quantitatively under mild conditions. MALDI and SALDI mass spectra (a matrix-free nanostructurized target was used in SALDI experiments) displayed only ion peaks corresponding to sulfonium cations whose mass numbers were equal to the sum of molecular weights of sulfides and weight increments of the introduced alkyl and aralkyl groups. Trans-alkylation was observed for benzyl-substituted sulfides. Tandem mass spectrometry provided preliminary data on the fragmentation of ESI-generated sulfonium cations and demonstrated differences in the MS/MS spectra of regioisomers.  相似文献   

20.
Although laser desorption mass spectrometry was introduced in the 1960s, the potential of laser mass spectrometry was not realised until the introduction of matrix-assisted laser desorption/ionisation (MALDI) in the 1980s. The technique relies on light-absorbing compounds called matrices that are co-crystallised with the analyte to achieve high ionisation and desorption efficiencies. MALDI offers a lot of advantages and is an indispensable tool in macromolecule analysis. However, the presence of the matrix also produces a high chemical background in the region below m/z 700 in the mass spectrum. Surface-assisted laser desorption/ionisation (SALDI) substitutes the chemical matrix of MALDI for an active surface, which means that matrix interference can be eliminated. SALDI mass spectrometry has evolved in recent years into a technique with great potential to provide insight into many of the challenges faced in modern research, including the growing interest in “omics” and the demands of pharmaceutical science. A great variety of materials have been reported to work in SALDI. Examples include a number of nanomaterials and surfaces. The unique properties of nanomaterials greatly facilitate analyte desorption and ionisation. This article reviews recent advances made in relation to carbon- and semiconductor-based SALDI strategies. Examples of their environmental, chemical and biomedical applications are discussed with the aim of highlighting progression in the field and the robustness of the technique, as well as to evaluate the strengths and weaknesses of individual approaches. In addition, this article describes the physical and chemical processes involved in SALDI and explains how the unique physical and electronic properties of nanostructured surfaces allow them to substitute for the matrix in energy transfer processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号