首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
On Quantum Team Games   总被引:2,自引:0,他引:2  
Recently Liu and Simaan (2004) convex static multi-team classical games have been introduced. Here they are generalized to both nonconvex, dynamic and quantum games. Puu's incomplete information dynamical systems are modified and applied to Cournot team game. The replicator dynamics of the quantum prisoner's dilemma game is also studied.  相似文献   

2.
We study the possible influence of a not necessarily sincere arbiter on the course of classical and quantum 2×2 games and we show that this influence in the quantum case is much bigger than in the classical case. Extreme sensitivity of quantum games on initial states of quantum objects used as carriers of information in a game shows that a quantum game, contrary to a classical game, is not defined by a payoff matrix alone but also by an initial state of objects used to play a game. Therefore, two quantum games that have the same payoff matrices but begin with different initial states should be considered as different games.  相似文献   

3.
Recent years, several ways of implementing quantum games in different physical systems have been presented. In this paper, we perform a theoretical analysis of an experimentally feasible way to implement a two player quantum game in cavity quantum electrodynamic(QED). In the scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field. So the scheme is insensitive to the influence from the cavity decay and the thermal field, and it does not require the cavity to remain in the vacuum state throughout the procedure.  相似文献   

4.
The effect of quantum noise on the restricted quantum game   总被引:1,自引:0,他引:1       下载免费PDF全文
曹帅  方卯发 《中国物理》2006,15(1):60-65
It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0 〈 p ≤ 0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 〈 p 〈 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.  相似文献   

5.
曹帅  方卯发  郑小娟 《中国物理》2007,16(4):915-918
It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of 0≤p≤0.622 (p is the quantum noise parameter), and then disappears in the range of 0.622 〈 p≤ 1. Increasing the amount of quantum noise leads to the reduction of the quantum player's payoff.  相似文献   

6.
In this work we have introduced two party games with respective winning conditions. One cannot win these games deterministically in the classical world if they are not allowed to communicate at any stage of the game. Interestingly we find out that in quantum world, these winning conditions can be achieved if the players share an entangled state. We also introduced a game which is impossible to win if the players are not allowed to communicate in classical world (both probabilistically and deterministically), yet there exists a perfect quantum strategy by following which, one can attain the winning condition of the game.  相似文献   

7.
We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time,we find that when Nash equilibrium exists the payoff function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example showing quantum game and classical game may differ.When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.  相似文献   

8.
Nash equilibria and correlated equilibria of classical and quantum games are investigated in the context of their Pareto efficiency. The examples of the prisoner’s dilemma, battle of the sexes and the game of chicken are studied. Correlated equilibria usually improve Nash equilibria of games but require a trusted correlation device susceptible to manipulation. The quantum extension of these games in the Eisert–Wilkens–Lewenstein formalism and the Frąckiewicz–Pykacz parameterization is analyzed. It is shown that the Nash equilibria of these games in quantum mixed Pauli strategies are closer to Pareto optimal results than their classical counter-parts. The relationship of mixed Pauli strategies equilibria and correlated equilibria is also studied.  相似文献   

9.
We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time,we find that when Nasli equilibrium exists the payoff function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example showing quantum game and classical game may differ.When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.  相似文献   

10.
While it is known that shared quantum entanglement can offer improved solutions to a number of purely cooperative tasks for groups of remote agents, controversy remains regarding the legitimacy of quantum games in a competitive setting. We construct a competitive game between four players based on the minority game where the maximal Nash-equilibrium payoff when played with the appropriate quantum resource is greater than that obtainable by classical means, assuming a local hidden variable model.  相似文献   

11.
Over the last twenty years, quantum game theory has given us many ideas of how quantum games could be played. One of the most prominent ideas in the field is a model of quantum playing bimatrix games introduced by J. Eisert, M. Wilkens and M. Lewenstein. The scheme assumes that players’ strategies are unitary operations and the players act on the maximally entangled two-qubit state. The quantum nature of the scheme has been under discussion since the article by Eisert et al. came out. The aim of our paper was to identify some of non-classical features of the quantum scheme.  相似文献   

12.
Parrondo’s paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probability greater than one-half. In this paper, we will analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox. The game we have utilized is simpler than games for which this behavior has been previously noted in the classical and quantum cases. We will show that in certain situations the paradox can occur to a greater degree in the quantum version than is possible in the classical versions.  相似文献   

13.
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.  相似文献   

14.
第四讲 量子对策论   总被引:1,自引:0,他引:1  
量子对策论是量子信息学的新兴分支,是经典对策论与量子信息学两门学科的交叉学科.由 于引入了量子力学中的量子叠加性和纠缠态,量子对策得出了与经典对策迥然不同的结果.  相似文献   

15.
We investigate the global chirality distribution of the quantum walk on the line when decoherence is introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. The first mechanism drives the system towards a classical diffusive behavior. This is used to build new quantum games, similar to the spin-flip game. The second mechanism involves two different possibilities: (a) All the quantum walk links have the same probability of being broken. (b) Only the quantum walk links on a half-line are affected by random breakage. In case (a) the decoherence drives the system to a classical Markov process, whose master equation is equivalent to the dynamical equation of the quantum density matrix. This is not the case in (b) where the asymptotic global chirality distribution unexpectedly maintains some dependence with the initial condition. Explicit analytical equations are obtained for all cases.  相似文献   

16.
In this work, the authors propose a quantum version of a generalized Monty Hall game, that is, one in which the parameters of the game are left free and not fixed on its regular values. The developed quantum scheme is then used to study the expected payoff of the player, using both a separable and an entangled initial‐state. In the two cases, the classical mixed‐strategy payoff is recovered under certain conditions. Lastly, the authors extend the quantum scheme to include multiple independent players, and use this extension to sketch two possible application of the game mechanics to quantum networks, specifically, two validated, multi‐party, key‐distribution quantum protocols.  相似文献   

17.
Lei Chen  Ming Gong  Guang-Can Guo 《Physica A》2010,389(19):4071-4074
A Parrondo game is a counterintuitive game where two losing games can be combined to form a winning game. We construct a quantum version of a Parrondo game based on a quantum ratchet effect for a delta-kicked model, which can be realized in optical lattices. A game set is presented and a quantum anti-Parrondo game is also investigated.  相似文献   

18.
This Letter extends our probabilistic framework for two-player quantum games to the multiplayer case, while giving a unified perspective for both classical and quantum games. Considering joint probabilities in the Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting for three observers, we use this setting in order to play general three-player noncooperative symmetric games. We analyze how the peculiar non-factorizable joint probabilities provided by the EPR-Bohm setting can change the outcome of a game, while requiring that the quantum game attains a classical interpretation for factorizable joint probabilities. In this framework, our analysis of the three-player generalized Prisoner's Dilemma (PD) shows that the players can indeed escape from the classical outcome of the game, because of non-factorizable joint probabilities that the EPR setting can provide. This surprising result for three-player PD contrasts strikingly with our earlier result for two-player PD, played in the same framework, in which even non-factorizable joint probabilities do not result in escaping from the classical consequence of the game.  相似文献   

19.
Solutions to quality control by lot sampling through the game theory approach are presented, and the results are compared with those obtained by the classical statistical method. Single and double plans are considered and modeled as two-person zero-sum games, and optimal solutions are found. Most of the solutions are reminiscent of known statistical results and reinforce them by adding new features.  相似文献   

20.
We build new quantum games, similar to the spin flip game, where as a novelty the players perform measurements on a quantum system associated to a continuous time search algorithm. The measurements collapse the wave function into one of the two possible states. These games are characterized by a continuous space of strategies and the selection of a particular strategy is determined by the moments when the players measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号