首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
High-amylose maize starch (Hylon VII) was submitted to melt-processing in an internal mixer at 100 °C and 40 rpm for 8 min. Glycerol was used as a plasticiser at different polymer/glycerol ratios. Torque and temperature curves were obtained. After glycerol extraction with ethyl alcohol, the samples were dispersed at 5 g/L, and treated by ultrasound radiation at the same conditions for 30 min. Samples were characterised by 1H NMR spectrometry, viscosity measurements, and X-ray diffractometry. The results revealed that both glycerol and water had an important role on the crystallinity properties of the resulting products. Melt-processed and sonicated samples showed similar 1H NMR spectra. Ultrasound treatment caused a significant reduction in intrinsic viscosity for the sample previously processed with the highest glycerol content, probably because of its higher solubility in water.  相似文献   

2.
Thin film beam splitters with high reflectivity at 532 nm and high transmittance at 1064 nm were deposited via reactive electron-beam evaporation with optimized parameters. The damage performance of the samples was investigated under irradiations of 532 nm laser only, 1064 nm laser only, and various combined laser fluences. The damages induced by the 1064 nm laser were primarily attributed to the initiators at the interface between the coatings and substrate. Under 532 nm laser irradiation only, two distinctive damage pits initiated by the submicron absorptive defects located at different coating depths and correlated to interfaces were observed. The damage effect under simultaneous irradiation in multilayer films was also investigated. The respective sensitive defects of the two lasers remained the precursors for causing damage. However, the dominant damage factors in simultaneous irradiation changed with the 1064 nm laser fluence, which also determined the coupling effect between the two lasers in terms of causing damage. Finally, correlative analysis methods were used to discuss the different coupling effects.  相似文献   

3.
The evaluation of local muscle recruitment during a specific movement can be done indirectly by measuring changes in local blood flow. Intravoxel incoherent motion perfusion imaging exploits some properties of the magnetic resonance to measure locally microvascular perfusion, and seems ideally suited for this task. We studied the selectivity of the increase in intravoxel incoherent motion blood flow related parameter fD* in the muscles of 24 shoulders after two physical exam maneuvers, Jobe and Lift-off test (test order reversed in half of the volunteers) each held 2 min against resistance. After a lift-off, IVIM blood flow-related fD* was increased in the subscapularis (in 10−3 mm2 s−1, 3.24 ± 0.86 vs. rest 1.37 ± 0.58, p < 0.001) and the posterior bundle of deltoid (2.62 ± 1.34 vs. rest 0.77 ± 0.32, p < 0.001). Those increases were selective when compared with other rotator cuff muscles and deltoid bundles respectively. After a Jobe test, increase in fD* was scattered within the rotator cuff muscles, but was selective for the lateral deltoid compared to the other deltoid bundles (anterior, p < 0.001; posterior, p < 0.05). Those results were similar when the testing order was reversed. In conclusion, this study demonstrated a selective increase in local microvascular perfusion after specific muscle testing of the shoulder muscles with IVIM. This technique has the potential to non-invasively characterize perfusion-related musculoskeletal physiological as well as pathological processes.  相似文献   

4.
Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.  相似文献   

5.
The present study investigates the mechanical behavior under static and dynamic loadings and assesses damage by the acoustic emission method of two types of sandwich composite materials. The sandwich structures under study are both made of cross-ply laminates as skins and PVC closed-cell as foam with different densities: 60 kg m−3 and 100 kg m−3. The mechanical behavior tests were conducted in static and cyclic fatigue loadings under 4-point bending. The sandwich structures considered in fatigue tests were damaged by a various number of shear damages in the foam. Static tests were performed to determine the failure parameters and characteristics used in fatigue tests. The damage density effect on the stiffness, hysteresis loops, dissipated energy and damping of sandwich structures, were studied for various numbers of cycles during cyclic fatigue tests. The acoustic emission method was used to identify and characterize the local damage in both types of sandwich materials under static 4-point bending tests.  相似文献   

6.
Osmotic dehydration (OD) of carambola slices were carried out using glucose, sucrose, fructose and glycerol as osmotic agents with 70 °Bx solute concentration, 50 °C of temperature and for time of 180 min. Glycerol and sucrose were selected on the basis of their higher water loss, weight reduction and lowers solid gain. Further the optimization of OD of carambola slices (5 mm thick) were carried out under different process conditions of temperature (40–60 °C), concentration of sucrose and glycerol (50–70 °Bx), time (180 min) and fruit to solution ratio (1:10) against various responses viz. water loss, solid gain, texture, rehydration ratio and sensory score according to a composite design. The optimized value for temperature, concentration of sucrose and glycerol has been found to be 50 °C, 66 °Bx and 66 °Bx respectively. Under optimized conditions the effect of ultrasound for 10, 20, 30 min and centrifugal force (2800 rpm) for 15, 30, 45 and 60 min on OD of carambola slices were checked. The controlled samples showed 68.14% water loss and 13.05% solid gain in carambola slices. While, the sample having 30 min ultrasonic treatment showed 73.76% water loss and 9.79% solid gain; and the sample treated with centrifugal force for 60 min showed 75.65% water loss and 6.76% solid gain. The results showed that with increasing in treatment time the water loss, rehydration ratio were increased and solid gain, texture were decreased.  相似文献   

7.
Several acrylic hydrogels were prepared via ultrasonic polymerization of water soluble monomers and macromonomers. Ultrasound was used to create initiating radicals in viscous aqueous monomer solutions using the additives glycerol, sorbitol or glucose in an open system at 37 °C. The water soluble additives were essential for the hydrogel production, glycerol being the most effective. Hydrogels were prepared from the monomers 2-hydroxyethyl methacrylate, poly(ethylene glycol) dimethacrylate, dextran methacrylate, acrylic acid/ethylene glycol dimethacrylate and acrylamide/bis-acrylamide. For example a 5% w/w solution of dextran methacrylate formed a hydrogel in 6.5 min in a 70% w/w solution of glycerol in water at 37° C with 20 kHz ultrasound, 56 W cm?2. The ultrasonic polymerization method described here has a wide range of applications such a biomaterial synthesis where initiators are not desired.  相似文献   

8.
This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30 s, 1.2 W/cm2, duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1 h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes.  相似文献   

9.
The present work illustrates the transesterification of glycerol to glycerol carbonate (GlyC) from dimethyl carbonate (DMC) using commercial immobilized lipase (Novozym 435) under ultrasonic irradiation. The experiments were performed in a batch reactor placed in an ultrasonic water bath using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound power on the conversion of glycerol to GlyC. It has been found that ultrasound-assisted lipase-catalyzed transesterification of glycerol would be a potential alternative to conventional alkali-catalyzed method, as high conversion (99.75%) was obtained at mild operating conditions: molar ratio of DMC to glycerol 3:1, catalyst amount of 13% (w/w), lower power input (100 W), duty cycle 50% and temperature (60 °C) in a relatively short reaction time (4 h) using Novozym 435 as catalyst. Ultrasound reduces the reaction time up to 4 h as compared to conventional stirring method (14 h) catalyzed by Novozym 435. The repeated use of the catalyst under the optimum experimental condition resulted in decay in both enzyme activity and product conversion.  相似文献   

10.
BackgroundAssessment of muscle atrophy and fatty degeneration in brachial plexus injury (BPI) could yield valuable insight into pathophysiology and could be used to predict clinical outcome. The objective of this study was to quantify and relate fat percentage and cross-sectional area (CSA) of the biceps to range of motion and muscle force of traumatic brachial plexus injury (BPI) patients.MethodsT1-weighted TSE sequence and three-point Dixon images of the affected and non-affected biceps brachii were acquired on a 3 Tesla magnetic resonance scanner to determine the fat percentage, total and contractile CSA of 20 adult BPI patients. Regions of interest were drawn by two independent investigators to determine the inter-observer reliability. Paired Students' t-test and multivariate analysis were used to relate fat percentage, total and contractile CSA to active flexion and biceps muscle force.ResultsThe mean fat percentage 12 ± 5.1% of affected biceps was higher than 6 ± 1.0% of the non-affected biceps (p < 0.001). The mean contractile CSA 8.1 ± 5.1 cm2 of the affected biceps was lower than 19.4 ± 4.9 cm2 of the non-affected biceps (p < 0.001). The inter-observer reliability was excellent (ICC 0.82 to 0.96). The contractile CSA contributed most to the reduction in active flexion and muscle force.ConclusionQuantitative measurement of fat percentage, total and contractile CSA using three-point Dixon sequences provides an excellent reliability and relates with active flexion and muscle force in BPI.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(5):1866-1874
This study investigated the mechanical bioeffects exerted by acoustic droplet vaporization (ADV) under different experimental conditions using vessel phantoms with a 200-μm inner diameter but different stiffness for imitating the microvasculature in various tumors. High-speed microscopy, passive cavitation detection, and ultrasound attenuation measurement were conducted to determine the morphological characteristics of vascular damage and clarify the mechanisms by which the damage was initiated and developed. The results show that phantom erosion was initiated under successive ultrasound exposure (2 MHz, 3 cycles) at above 8-MPa peak negative pressures (PNPs) when ADV occurred with inertial cavitation (IC), producing lesions whose morphological characteristics were dependent on the amount of vaporized droplets. Slight injury occurred at droplet concentrations below (2.6 ± 0.2) × 106 droplets/mL, forming shallow and rugged surfaces on both sides of the vessel walls. Increasing the droplet concentration to up to (2.6 ± 0.2) × 107 droplets/mL gradually suppressed the damage on the distal wall, and turned the rugged surface on the proximal wall into tunnels rapidly elongating in the direction opposite to ultrasound propagation. Increasing the PNP did not increase the maximum tunnel depth after the ADV efficiency reached a plateau (about 71.6 ± 2.7% at 10 MPa). Increasing the pulse duration effectively increased the maximum tunnel depth to more than 10 times the diameter of the vessel even though there was no marked enhancement in IC dose. It can be inferred that substantial bubble generation in single ADV events may simultaneously distort the acoustic pressure distribution. The backward ultrasound reinforcement and forward ultrasound shielding relative to the direction of wave propagation augment the propensity of backward erosion. The results of the present work provide information that is valuable for the prevention or utilization of ADV-mediated mechanical bioeffects in clinical applications.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(5):1624-1628
In this study, we applied sonodynamic therapy to cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with avidin protein, which preferentially discriminated cancerous cells from healthy cells. Subsequently, hydroxyl radicals were generated from the TiO2 NPs after activation by external ultrasound irradiation (TiO2/US treatment). Although 30% of the normal breast cells (human mammary epithelial cells) exhibited the uptake of avidin-modified TiO2 NPs, over 80% of the breast cancer cells (MCF-7) exhibited the uptake of avidin-TiO2 NPs. Next the effect of the TiO2/US treatment on MCF-7 cell growth was examined for up to 96 h after 1-MHz ultrasound was applied (0.1 W/cm2, 30 s) to cells that incorporated the TiO2 NPs. No apparent cell injury was observed until 24 h after the treatment, but the viable cell concentration declined to 68% compared with the control at 96 h.  相似文献   

13.
Monoglyceryl phenolic acids (MPAs) were known as the natural hydrophilic antioxidants which could be used in different fields such as food, pharmaceutical, cosmetic etc. A novel enzymatic route of MPAs synthesis by the alcoholysis of phenolic acid ethyl esters with glycerol under ultrasound irradiation in solvent free system was developed. Optimization of reaction parameters shows that a high conversion of above 97.4% can be obtained under the following conditions: phenolic acid ethyl esters to glycerol molar ratio of 1:10, with 6% catalyst (Novozym 435), at 60 °C and 200 rpm, with ultrasound input of 250 W, at 20 kHz frequency. Compared to the conventional stirring method, the activation energy for phenolic acid ethyl esters conversion was decreased from 65.0 kJ/mol to 32.1 kJ/mol under ultrasound promotion; the apparent kinetic constant (Vm/Km) increased above 1.2-folds; the lipase amount decreased to 50%; the time required for the maximum conversion reduced up to 3-folds without damaging the lipase activity, which is the fastest report for enzymatic synthesis of MPAs.  相似文献   

14.
In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.  相似文献   

15.
The influence of damage induced by 2 MeV protons on CdZnTe radiation detectors is investigated using ion beam induced charge (IBIC) microscopy. Charge collection efficiency (CCE) in irradiated region is found to be degraded above a fluence of 3.3 × 1011 p/cm2 and the energy spectrum is severely deteriorated with increasing fluence. Moreover, CCE maps obtained under the applied biases from 50 V to 400 V suggests that local radiation damage results in significant degradation of CCE uniformity, especially under low bias, i. e., 50 V and 100 V. The CCE nonuniformity induced by local radiation damage, however, can be greatly improved by increasing the detector applied bias. This bias-dependent effect of 2 MeV proton-induced radiation damage in CdZnTe detectors is attributed to the interaction of electron cloud and radiation-induced displacement defects.  相似文献   

16.
Using a CCD LEED system for the collection of IV data with low beam damage, and full dynamical as well as tensor LEED calculations, we have determined the geometries of the (2 × 2)-(O + 3H) and the (2 × 2)-(O + H) coadsorbate structures on Ru(0 0 1). We show that here quantitative LEED can locate the H atoms very well. Not only their sites (hcp in the first, fcc in the second case), but also the Ru–H spacings and changes in the first two substrate layers are clearly determined. We argue that this success is due to the relatively large data range and to the smaller H mobility compared to pure H layers caused by their repulsive lateral interactions with the oxygen atoms.  相似文献   

17.
This study evaluated the synergetic effects of ultrasound and slightly acidic electrolyzed water (SAEW) on the inactivation of Staphylococcus aureus using flow cytometry and electron microscopy. The individual ultrasound treatment for 10 min only resulted in 0.36 log CFU/mL reductions of S. aureus, while the SAEW treatment alone for 10 min resulted in 3.06 log CFU/mL reductions. The log reductions caused by combined treatment were enhanced to 3.68 log CFU/mL, which were greater than the sum of individual treatments. This phenomenon was referred to as synergistic effects. FCM analysis distinguished live and dead cells as well as revealed dynamic changes in the physiological states of S. aureus after different treatments. The combined treatment greatly reduced the number of viable but nonculturable (VBNC) bacteria to 0.07%; in contrast, a single ultrasound treatment for 10 min induced the formation of VBNC cells to 45.75%. Scanning and transmission electron microscopy analysis revealed that greater damage to the appearance and ultrastructure of S. aureus were achieved after combined ultrasound-SAEW treatment compared to either treatment alone. These results indicated that combining ultrasound with SAEW is a promising sterilization technology with potential uses for environmental remediation and food preservation.  相似文献   

18.
Glomerular mesangial cells (MCs) are centrally located in the glomerulus. MCs control not only glomerular filtration, but also the response to local injury, including cell proliferation and basement membrane remodeling. Angiotensin II (Ang II) plays an important role in kidney function regulation, and participates in the progression of renal damage, as well as mesangial injury. However, studies on Ang II effects on MCs have used indirect methods, such as gene and protein expression after MC injury. In this study, we visually observed structural and mechanical changes to MC after Ang II treatment using atomic force microscopy (AFM). We obtained AFM topography and deflection images of live MCs, as well as fixed MCs in liquid, before and after Ang II treatment. Real-time imaging showed the dynamic movement of live MCs induced by Ang II. Changes in MC elastic property after Ang II treatment were measured using force–distance curves. AFM images of fixed and live MCs showed that cells contracted after Ang II exposure, with the nucleus height increasing within 20 min of Ang II stimulation. Force–distance analysis showed that Ang II caused MCs to stiffen (p < 0.0001). In conclusion, we demonstrated that AFM is an effective tool for real-time monitoring of live cell responses to drugs and stimuli.  相似文献   

19.
Laser-induced damage in silicon-on-insulator (SOI) material is investigated with 1064 nm laser pulses. As the laser pulse duration is increased from 190 ps to 1.14 s, the damage threshold of SOI material decreases from 1.3×1010 to 7.7×103 W/cm2 in laser flux. It is found that the damage threshold varies inversely as the pulse duration for a short irradiation time, and is independent of pulse duration for a long irradiation time. The time dependence is in good agreement with a thermal model which well describes the thermal-induced damage in a semi-finite material irradiated by a Gaussian laser beam. The values of absorption coefficient and thermal conductivity under laser irradiation are calculated as 1.1×103 cm?1 and 0.18 Wcm?1 K?1, respectively, by fitting the model to the experimental results. These results on material damage can be used to predict the damage thresholds of SOI-based devices.  相似文献   

20.
The prevalence of cartilage lesions is much higher in football athletes than in the general population. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been shown to quantify regional variations of glycosaminoglycan (GAG) concentrations which is an indicator of early cartilage degeneration. The goal of this study is to determine whether dGEMRIC can be used to assess the influence in cartilage GAG concentration due to college level football play. Thirteen collegiate football players with one to four years of collegiate football play experience were recruited and both knee joints were scanned using a dedicated 8-channel phased array knee coil on a 3 T MRI system. The contrast concentrations within cartilage were calculated based on the T1 values from dGEMRIC scans. No substantial differences were found in the contrast concentrations between the pre- and post-season across all the cartilage compartments. One year collegiate football players presented an average contrast concentration at the pre-season of 0.116 ± 0.011 mM and post-season of 0.116 ± 0.011 mM. In players with multiple years of football play, contrast uptake was elevated to 0.141 ± 0.012 mM at the pre-season and 0.139 ± 0.012 mM at the post-season. The pre-season 0.023 ± 0.016 mM and post-season 0.025 ± 0.016 mM increase in contrast concentration within the group with multiple years of experience presented with a > 20% increase in contrast uptake. This may indicate the gradual, cumulative damage of football play to the articular cartilage over years, even though the effect may not be noticeable after a season of play. Playing collegiate football for a longer period of time may lead to cartilage microstructural alterations, which may be linked to early knee cartilage degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号