首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we determine the general solution of the functional equation f1 (2x + y) + f2(2x - y) = f3(x + y) + f4(x - y) + f5(x) without assuming any regularity condition on the unknown functions f1,f2,f3, f4, f5 : R→R. The general solution of this equation is obtained by finding the general solution of the functional equations f(2x + y) + f(2x - y) = g(x + y) + g(x - y) + h(x) and f(2x + y) - f(2x - y) = g(x + y) - g(x - y). The method used for solving these functional equations is elementary but exploits an important result due to Hosszfi. The solution of this functional equation can also be determined in certain type of groups using two important results due to Szekelyhidi.  相似文献   

2.
In this paper, we establish the general solution and investigate the generalized Hyers-Ulam stability of the following mixed additive and quadratic functional equation
f(lx + y) + f(lx - y) = f(x + y) + f(x - y) + (l- 1)[(l+2)f(x) + lf(-x)],f(\lambda x + y) + f(\lambda x - y) = f(x + y) + f(x - y) + (\lambda - 1)[(\lambda +2)f(x) + \lambda f(-x)],  相似文献   

3.
The stability problems of the exponential (functional) equation on a restricted domain will be investigated, and the results will be applied to the study of an asymptotic property of that equation. More precisely, the following asymptotic property is proved: Let X be a real (or complex) normed space. A mapping f : X → C is exponential if and only if f(x + y) - f(x)f(y) → 0 as ||x|| + ||y|| → ∞ under some suitable conditions.  相似文献   

4.
In this paper, the direct method and the fixed point alternative method are implemented to give Hyers-Ulam-Rassias stability of the functional equation . Decomposer equations:
f(f*(x)f(y))=f(y),f(f(x)f*(y))=f(x)
.Strong decomposer equations:
f(f*(x)y)=f(y),f(xf*(y))=f(x)
.Canceler equations:
f(f(x)y)=f(xy),f(xf(y))=f(xy),f(xf(y)z)=f(xyz)
, where f*(x) f(x) = f (x) f* (x) = x. In this paper we solve them and introduce the general solution of the decomposer and strong decomposer equations in the sets with a binary operation and semigroups respectively and also associative equations in arbitrary groups. Moreover we state some equivalent equations to them and study the relations between the above equations. Finally we prove that the associative equations and the system of strong decomposer and canceler equations do not have any nontrivial solutions in the simple groups.  相似文献   

6.
Using the fixed point alternative theorem we establish the orthogonal stability of the quadratic functional equation of Pexider type f (x+y)+g(xy) = h(x)+k(y), where f, g, h, k are mappings from a symmetric orthogonality space to a Banach space, by orthogonal additive mappings under a necessary and sufficient condition on f.  相似文献   

7.
We solve the functional equationf(x 3 +y 3) =f(x)3 +f(y)3 for maps of a finite field into itself.  相似文献   

8.
In this paper, we establish a general solution and the generalized Hyers-Ulam-Rassias stability of the following general mixed additive-cubic functional equation
6f(x + y) - 6f(x - y) + 4f(3y) = 3f(x + 2y) - 3f(x - 2y) + 9f(2y)6f(x + y) - 6f(x - y) + 4f(3y) = 3f(x + 2y) - 3f(x - 2y) + 9f(2y)  相似文献   

5.
In the previous researches [2,3] b-integer and b-decimal parts of real numbers were introduced and studied by M.H. Hooshmand. The b-parts real functions have many interesting number theoretic explanations, analytic and algebraic properties, and satisfy the functional equation f (f(x) + y - f(y)) = f(x). These functions have led him to a more general topic in semigroups and groups (even in an arbitrary set with a binary operation [4] and the following functional equations have been introduced: Associative equations:
f(xf(yz))=f(f(xy)z),f(xf(yz))=f(f(xy)z)=f(xyz)
f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x)f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x)  相似文献   

9.
《Quaestiones Mathematicae》2013,36(5):651-663
Abstract

Let G be an Abelian group with a metric d and E ba a normed space. For any f : GE we define the generalized quadratic di?erence of the function f by the formula

Qk f (x, y) := f (x + ky) + f (x ? ky) ? f (x + y) ? f (x ? y) ? 2(k2 ? 1)f (y)

for all x, yG and for any integer k with k ≠ 1, ?1. In this paper, we achieve the general solution of equation Qk f (x, y) = 0, after it, we show that if Qk f is Lipschitz, then there exists a quadratic function K : GE such that f ? K is Lipschitz with the same constant. Moreover, some results concerning the stability of the generalized quadratic functional equation in the Lipschitz norms are presented. In the particular case, if k = 0 we obtain the main result that is in [7].  相似文献   

10.
We obtain the super stability of Cauchy's gamma-beta functional equation
B(x,y)f(x+y)=f(x)f(y),  相似文献   

11.
In this paper, a symmetry classification of a (2+1)-nonlinear wave equation uttf(u)(uxx+uyy)=0 where f(u) is a smooth function on u, using Lie group method, is given. The basic infinitesimal method for calculating symmetry groups is presented, and used to determine the general symmetry group of this (2+1)-nonlinear wave equation.  相似文献   

12.
In this paper, we achieve the general solution and the generalized Hyres–Ulam–Rassias stability of the following additive–quadratic functional equation
f (x + ky) + f (x - ky) = f (x + y) + f (x - y) + \frac2(k + 1)k f (ky) - 2(k + 1)f (y)f (x + ky) + f (x - ky) = f (x + y) + f (x - y) + \frac{2(k + 1)}{k} f (ky) - 2(k + 1)f (y)  相似文献   

13.
The aim of the paper is to deal with the following composite functional inequalities
f(f(x)-f(y)) £ f(x+y) + f(f(x-y)) -f(x) - f(y), f(f(x)-f(y)) £ f(f(x+y)) + f(x-y) -f(x) - f(y), f(f(x)-f(y)) £ f(f(x+y)) + f(f(x-y)) -f(f(x)) - f(y),\begin{gathered}f(f(x)-f(y)) \leq f(x+y) + f(f(x-y)) -f(x) - f(y), \hfill \\ f(f(x)-f(y)) \leq f(f(x+y)) + f(x-y) -f(x) - f(y), \hfill \\ f(f(x)-f(y)) \leq f(f(x+y)) + f(f(x-y)) -f(f(x)) - f(y),\end{gathered}  相似文献   

14.
We investigate the stability of Pexiderized mappings in Banach modules over a unital Banach algebra. As a consequence, we establish the Hyers-Ulam stability of the orthogonal Cauchy functional equation of Pexider type f1(x+y)=f2(x)+f3(y), xy in which ⊥ is the orthogonality in the sense of Rätz.  相似文献   

15.
In Geoffroy et al, Acceleration of convergence in Dontchev's iterative method for solving variational inclusions Serdica Math. J. 29 (2003), pp. 45–54] we showed the convergence of a cubic method for solving generalized equations of the form 0 ∈ f(x) +- G(x) where f is a function and G stands for a set-valued map. We investigate here the stability of such a method with respect to some perturbations. More precisely, we consider the perturbed equation yf(x) +- G(x) and we show that the pseudo-Lipschitzness of the map (f +- G)−1 is closely tied to the uniformity of our method in the sense that the attraction region does not depend on small perturbations of the parameter y. Finally, we provide an enhanced version of the convergence theorem established by Geoffroy, et al.  相似文献   

16.
Summary We produce complete solution formulas of selected functional equations of the formf(x +y) ±f(x + σ (ν)) = Σ I 2 =1 g l (x)h l (y),x, yG, where the functionsf,g 1,h 1 to be determined are complex valued functions on an abelian groupG and where σ:G→G is an involution ofG. The special case of σ=−I encompasses classical functional equations like d’Alembert’s, Wilson’s first generalization of it, Jensen’s equation and the quadratic equation. We solve these equations, the equation for symmetric second differences in product form and similar functional equations for a general involution σ.  相似文献   

17.
We give the solution of the functional equation f(x+y)+λf(x)f(y)=Φ(x,y) under some conditions. Also we show its Hyers-Ulam stability.  相似文献   

18.
A comparative study of the functional equationsf(x+y)f(xy)=f 2(x)–f 2(y),f(y){f(x+y)+f(xy)}=f(x)f(2y) andf(x+y)+f(xy)=2f(x){1–2f 2(y/2)} which characterise the sine function has been carried out. The zeros of the functionf satisfying any one of the above equations play a vital role in the investigations. The relation of the equationf(x+y)+f(xy)=2f(x){1–2f 2(y/2)} with D'Alembert's equation,f(x+y)+f(xy)=2f(x)f(y) and the sine-cosine equationg(xy)=g(x)g(y) +f(x)f(y) has also been investigated.  相似文献   

19.
In this paper, we investigate the Hyers-Ulam stability problem for the difference equation f(x +p, y +q)- φ(x, y)f(x, y)- ψ(x, y)= 0. An erratum to this article is available at .  相似文献   

20.
Summary. Let (G, +) and (H, +) be abelian groups such that the equation 2u = v 2u = v is solvable in both G and H. It is shown that if f1, f2, f3, f4, : G ×G ? H f_1, f_2, f_3, f_4, : G \times G \longrightarrow H satisfy the functional equation f1(x + t, y + s) + f2(x - t, y - s) = f3(x + s, y - t) + f4(x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , then f1, f2, f3, and f4 are given by f1 = w + h, f2 = w - h, f3 = w + k, f4 = w - k where w : G ×G ? H w : G \times G \longrightarrow H is an arbitrary solution of f (x + t, y + s) + f (x - t, y - s) = f (x + s, y - t) + f (x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , and h, k : G ×G ? H h, k : G \times G \longrightarrow H are arbitrary solutions of Dy,t3g(x,y) = 0 \Delta_{y,t}^{3}g(x,y) = 0 and Dx,t3g(x,y) = 0 \Delta_{x,t}^{3}g(x,y) = 0 for all x, y, s, t ? G x, y, s, t \in G .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号