首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter stands for the distance between two coils of the helix. The pipe has small cross-section of size . Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe. To cite this article: E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).

Résumé

On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à . A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube. Pour citer cet article : E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).  相似文献   

2.
In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study – via direct numerical simulations – the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré–Silberberg effect takes place. To cite this article: T.-W. Pan, R. Glowinski, C. R. Mecanique 333 (2005).  相似文献   

3.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).  相似文献   

4.
We study the flow of a viscous incompressible fluid through a long and narrow elastic tube whose walls are modeled by the Navier equations for a curved, linearly elastic membrane. The flow is governed by a given small time dependent pressure drop between the inlet and the outlet boundary, giving rise to creeping flow modeled by the Stokes equations. By employing asymptotic analysis in thin, elastic, domains we obtain the reduced equations which correspond to a Biot type viscoelastic equation for the effective pressure and the effective displacement. The approximation is rigorously justified by obtaining the error estimates for the velocity, pressure and displacement. Applications of the model problem include blood flow in small arteries. We recover the well-known Law of Laplace and provide a new, improved model when shear modulus of the vessel wall is not negligible. To cite this article: S. ?ani?, A. Mikeli?, C. R. Mecanique 330 (2002) 661–666.  相似文献   

5.
In the present study, five different invert trap configurations (rectangular with and without lids on both sides; trapezoidal, trapezoidal with rectangular base and rectangular with trapezoidal base with lids on both sides) were simulated for both two-dimensional (2D) and three-dimensional (3D) flow conditions for three sediment types (sand, styrocell and plastic beads) at six flow rates (0.35, 0.70, 1.05, 1.35, 4.55 and 9.95 L/s) for each trap. Computational fluid dynamics (CFD)-based modeling using FLUENT software with Renormalization Group (RNG) k-e model along with discrete phase model (DPM) were used in the simulations. A hexagonal/tetrahedral and map-type non-uniform grid was chosen to discretize the entire computational domain and a control volume finite difference method was used to solve the governing equations. The flow rates selected in the present study cover the entire range of flow rate expected for dry weather and monsoon. The simulation is capable of differentiating between 2D and 3D modeling of particle trajectories, the effects of flow rate and trap geometry on flow patterns developed in the trap. The sediment retention ratio for 2D is higher than that for 3D modeling for all flow conditions, particle types and model geometry due to inclusion of lateral effects in 3D modeling. The invert trap having rectangular shape with trapezoidal base is found to be the most efficient configuration in both 2D and 3D modeling.  相似文献   

6.
We study the homogenization of evolution equations such as:
where the coefficient a is -periodic and takes very high values on a subset TΩ (fibered structure) of very small measure. We find a non-local effective equation deduced from a homogenized system of several equations. To cite this article: M. Bellieud, C. R. Mecanique 330 (2002) 843–848.  相似文献   

7.
A new formulation is proposed to describe immiscible compressible two-phase flow in porous media. The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. To cite this article: B. Amaziane, M. Jurak, C. R. Mecanique 336 (2008).  相似文献   

8.
In this work we consider a planar stationary flow of an incompressible viscous fluid in a semi-infinite strip governed by the standard Stokes system. We show how this fluid can be stopped at a finite distance from the entrance of the semi-infinite strip by means of a feedback source depending in a sublinear way on the velocity field. This localization effect is proved by reducing the problem to a non-linear biharmonic type one for which the localization of solutions is obtained through the application of an energy method, in the spirit of the monograph by S.N. Antontsev, J.I. Díaz and S.I. Shmarev (Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002). Since the presence of the non-linear terms defined by the source is not standard in fluid mechanics literature, we give also some results about the existence and uniqueness of weak solutions for this problem. To cite this article: S.N. Antontsev et al., C. R. Mecanique 330 (2002) 797–802.  相似文献   

9.
A plane supersonic flow with symmetric perpendicular injection of jets through slots in the walls is numerically simulated with the use of Navier–Stokes equations. The effect of the jet pressure ratio and Mach number on the flow structure is considered. The angle of inclination of the shock wave and the separationregion length are found as functions of the jet pressure ratio. The influence of the jet pressure ratio on the increase in the lift force arising owing to interaction of the flow with the injected jet is found.  相似文献   

10.
The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier–Stokes equation with low Reynolds k– model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier–Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees fairly well with experiments.  相似文献   

11.
In this study, the differential quadrature (DQ) method was used to simulate the eccentric Couette–Taylor vortex flow in an annulus between two eccentric cylinders with rotating inner cylinder and stationary outer cylinder. An approach combining the SIMPLE (semi-implicit method for pressure-linked equations) and DQ discretization on a non-staggered mesh was proposed to solve the time-dependent, three-dimensional incompressible Navier–Stokes equations in the primitive variable form. The eccentric steady Couette–Taylor flow patterns were obtained from the solution of three-dimensional Navier–Stokes equations. The reported numerical results for steady Couette flow were compared with those from Chou [1], and San and Szeri [2]. Very good agreement was achieved. For steady eccentric Taylor vortex flow, detailed flow patterns were obtained and analyzed. The effect of eccentricity on the eccentric Taylor vortex flow pattern was also studied.  相似文献   

12.
We show here the global, in time, regularity of the three dimensional viscous Camassa–Holm (Navier–Stokes-alpha) (NS-) equations. We also provide estimates, in terms of the physical parameters of the equations, for the Hausdorff and fractal dimensions of their global attractor. In analogy with the Kolmogorov theory of turbulence, we define a small spatial scale, , as the scale at which the balance occurs in the mean rates of nonlinear transport of energy and viscous dissipation of energy. Furthermore, we show that the number of degrees of freedom in the long-time behavior of the solutions to these equations is bounded from above by (L/ )3, where L is a typical large spatial scale (e.g., the size of the domain). This estimate suggests that the Landau–Lifshitz classical theory of turbulence is suitable for interpreting the solutions of the NS- equations. Hence, one may consider these equations as a closure model for the Reynolds averaged Navier–Stokes equations (NSE). We study this approach, further, in other related papers. Finally, we discuss the relation of the NS- model to the NSE by proving a convergence theorem, that as the length scale 1 tends to zero a subsequence of solutions of the NS- equations converges to a weak solution of the three dimensional NSE.  相似文献   

13.
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh–Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).  相似文献   

14.
In this first part we propose and analyse a model for the study of two‐dimensional incompressible Navier–Stokes equations with a temperature‐dependent viscosity. The flow is supposed in a mixed convection regime and considers an outflow region, leading to a strongly coupled problem between the Navier–Stokes and energy equations, which will be justified theoretically. The coupling in the continuous problem is treated by an outer temperature fixed point strategy. Existence results for a particular variational formulation follows from this study. Further, a particular uniqueness result for small data is also obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present fully implicit continuous Galerkin–Petrov (cGP) and discontinuous Galerkin (dG) time‐stepping schemes for incompressible flow problems which are, in contrast to standard approaches like for instance the Crank–Nicolson scheme, of higher order in time. In particular, we analyze numerically the higher order dG(1) and cGP(2) methods, which are super convergent of third, resp., fourth order in time, whereas for the space discretization, the well‐known LBB‐stable finite element pair of third‐order accuracy is used. The discretized systems of nonlinear equations are treated by using the Newton method, and the associated linear subproblems are solved by means of a monolithic (geometrical) multigrid method with a blockwise Vanka‐like smoother treating all components simultaneously. We perform nonstationary simulations (in 2D) for two benchmarking configurations to analyze the temporal accuracy and efficiency of the presented time discretization schemes w.r.t. CPU and numerical costs. As a first test problem, we consider a classical ‘flow around cylinder’ benchmark. Here, we concentrate on the nonstationary behavior of the flow patterns with periodic oscillations and examine the ability of the different time discretization schemes to capture the dynamics of the flow. As a second test case, we consider the nonstationary ‘flow through a Venturi pipe’. The objective of this simulation is to control the instantaneous and mean flux through this device. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This Note is dedicated to the numerical treatment of the ill-posed Cauchy–Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an ‘interfacial’ equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments. To cite this article: R. Ben Fatma et al., C. R. Mecanique 335 (2007).  相似文献   

17.
We consider an elasticity problem in a domain Ω()F(), where Ω is an open bounded domain in R3, F() is a connected nonperiodic set in Ω like a net of slender bars, and is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(), i.e., for sufficiently small , the set F() is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model. To cite this article: M. Goncharenko, L. Pankratov, C. R. Mecanique 331 (2003).  相似文献   

18.
This paper studies integral relations to which the solutions of the Navier–Stokes equations or Euler equations satisfy in the case of fluids filling the entire threedimensional space. The existence of these relations is due to a rapid decrease of the velocity field at infinity (but not too rapid in order that the required asymptotic forms are reproduced with time). Of special interest are the integrals of motion whose density depends quadratically on the velocities or their derivative with respect to the coordinates. Such integrals (conservation laws) for the Navier–Stokes equations were recently found by Dobrokhotov and Shafarevich. In the present paper, new conservation laws are obtained, which are quadratic in the derivatives of the velocity and lead to identities that link the averaged and pulsation characteristics of ree turbulent flows.  相似文献   

19.
Relaxation-based multigrid solvers for the steady incompressible Navier–Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods were used as smoothers in a common tailored multigrid procedure. The resulting solvers were applied to three two-dimensional flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L2 norm of the velocity changes is reduced to 10?6 in a few 10's of fine-grid sweeps. The results of the study are used to draw conciusions on the strengths and weaknesses of the individual relaxation methods as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.  相似文献   

20.
We use the method of the topological degree, the theory of fractional powers of positive operators, and the Grisvard formula together with results proved by G. Raugel and G. R. Sell to study the periodic solutions of the incompressible Navier–Stokes equations in a thin three-dimensional domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号