首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho-methoxy group (NM) at its bay positions (PBI-2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol−1) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co-planarization of the different aromatic units, resulting in delocalization of the π-electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co-planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H-bond-driven co-planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.  相似文献   

2.
A red-green-blue (RGB) multichromophoric antenna 1 consisting of energy donors naphthalimides and perylenediimides and a central aza-BODIPY energy acceptor along with two subchromophoric red-blue (RB 6) and green-blue (GB 12) antennae was designed that showed efficient cascade Förster resonance energy transfer (FRET). RGB antenna 1 showed pronounced temperature-dependent emission behaviour where emission intensities in green and red channels could be tuned in opposite directions by temperature giving rise to unique ratiometric sensing with a temperature sensitivity of 0.4% °C. RGB antenna 1 showed reversible absorption modulation selectively in the blue region (RGB ↔ RG) upon acid/base addition giving rise to pH sensing behaviour. Furthermore, RGB antenna 1 was utilized to selectively sense metal ions such as Co2+ and Fe3+ through a FRET turn-off mechanism induced by a redox process at the aza-BODIPY site that resulted in the selective spectral modulation of the red band (i.e., RGB → GB). Model antenna RB 6 showed white light emission with chromaticity coordinates (0.32, 0.33) on acid addition. Antennae 1, 6 and 12 also exhibited solution state electrochromic switching characterized by distinct colour changes upon changing the potential. Finally, antennae 1, 6 and 12 served as reversible fluorescent inks in PMMA/antenna blends whereby the emission colours could be switched or tuned using different stimuli such as acid vapour, temperature and metal ions.

RGB antennae consisting of naphthalimides, perylenediimides and aza-BODIPY with efficient FRET show unique ratiometric temperature sensing, metal sensing (FRET-off) and pH sensing through various stimuli sensitive band tuning.  相似文献   

3.
Two kinds of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyads BDP-OH containing 4-hydroxystyrene groups and BDP-PY bearing pyridinyl units were prepared. In addition, a naphthalene derivative NAP-PY modified by pyridinyl moieties substituent was made. The above three dyads could be used to construct white-light emission (WLE) material by a supramolecular engineering strategy due to their three primary colors of blue, green and red. The supramolecular correlations between the hydroxyl group of BDP-OH and the pyridinyl groups of NAP-PY and BDP-PY were confirmed by 1H NMR titration, 2D NOESY and FTIR. A fluorescence monitor application was carried out based on the realization of WLE. This work might be useful for designing other WLE supramolecular systems and image display.  相似文献   

4.
A water-soluble ratiometric fluorescent probe ZID-1 has been developed on the basis of an internal charge transfer (ICT) mechanism. Upon complexation with Zn2+ under physiological conditions, ZID-1 exhibits a significant blue shift of 77 nm in the emission spectrum. The fluorescent behavior of ZID-1 suggests that the pyridyl group incorporated into the fluorophore coordinates the metal ion as the fourth ligand and affords an appropriate binding affinity (Kd = 17.1 nM) for the intracellular imaging of Zn2+.  相似文献   

5.
The origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho‐methoxy group (NM) at its bay positions (PBI‐2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol?1) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co‐planarization of the different aromatic units, resulting in delocalization of the π‐electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co‐planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H‐bond‐driven co‐planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.  相似文献   

6.
White light emitting (WLE) materials are of increasing interest owing to their promising applications in artificial lighting, display devices, molecular sensors, and switches. In this context, organic WLE materials cater to the interest of the scientific community owing to their promising features like color purity, long-term stability, solution processability, cost-effectiveness, and low toxicity. The typical method for the generation of white light is to combine three primary (red, green, and blue) or the two complementary (e.g., yellow and blue or red and cyan) emissive units covering the whole visible spectral window (400–800 nm). The judicious choice of molecular building blocks and connecting them through either strong covalent bonds or assembling through weak noncovalent interactions are the key to achieve enhanced emission spanning the entire visible region. In the present review article, molecular engineering approaches for the development of all-organic WLE materials are analyzed in view of different photophysical processes like fluorescence resonance energy transfer (FRET), excited-state intramolecular proton transfer (ESIPT), charge transfer (CT), monomer-excimer emission, triplet-state harvesting, etc. The key aspect of tuning the molecular fluorescence under the influence of pH, heat, and host–guest interactions is also discussed. The white light emission obtained from small organic molecules to supramolecular assemblies is presented, including polymers, micelles, and also employing covalent organic frameworks. The state-of-the-art knowledge in the field of organic WLE materials, challenges, and future scope are delineated.  相似文献   

7.
A colorimetric and ratiometric fluorescence anion sensor 1 was designed and synthesized according to site-signalling subunit approach. The sensor exhibited visible color changes from yellow to purple upon addition of the strong basic anions such as acetate. The ratiometric fluorescence changes with significant blue shift about 140 nm were observed during the fluorescence titrations. Such ratiometric fluorescence changes could be due to inhibition of excited-state intramolecular proton transfer (ESIPT). The 1H NMR titrations indicated that the sensor 1 showed deprotonation in presence of large amounts of acetate ion. Therefore, ESIPT was inhibited owing to presence of deprotonation of phenol unit.  相似文献   

8.
Chromophores ranging from simple small molecule π-conjugated systems comprised of phenylene ethynylene or fluorenylethynyl units to cross-conjugated Bunz-type cruciforms have been derivatized to include 1,3-bis(dimethylaminomethyl)phenyl moieties. The photophysical responsiveness of these diamino-substituted chromophores to metal ions has been examined. Both emission enhancement (turn-on) and ratiometric fluorescence detection of Cu(2+) and Zn(2+) ions have been achieved in THF.  相似文献   

9.
Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1 – K4 ). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2 , 4 , 5 , 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different Kd values for an intra- or extracellular Na+ analysis. Thus, we found that 2 , 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (Kd=106 mm ) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (Kd=78 mm ) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.  相似文献   

10.
Borylated arylisoquinolines with redshifted internal charge‐transfer (ICT) emission were prepared and characterized. Upon heating, significant fluorescence quenching was observed, which forms the basis for a molecular thermometer. In the investigated temperature range (283–323 K) an average sensitivity of ?1.2 to ?1.8 % K?1 was found for the variations in fluorescence quantum yield and lifetime. In the physiological temperature window (298–318 K) the average sensitivity even reaches values of up to ?2.4 % K?1. The thermometer function is interpreted as the interplay between excited ICT states of different geometry. In addition, the formation of an intramolecular Lewis pair can be followed by 11B NMR spectroscopy. This provides a handle to monitor temperature‐dependent ground‐state geometry changes of the dyes. The role of steric hindrance is addressed by the inclusion of a derivative that lacks the Lewis pair formation.  相似文献   

11.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

12.
A red–green–blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi‐colour emission was constructed; the blue‐emitting cationic oligofluorene nanoparticle acted as an energy‐donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red‐emitting dye embedded in the nanoparticle (interior FRET) and to a green‐emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual‐FRET system exhibits multi‐colour emission, including white, in aqueous solution and film state. A characteristic white‐emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit.  相似文献   

13.
《中国化学快报》2023,34(8):108093
Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, we designed a novel dual-emissive fluorescence nanoplatform for ATP sensing based on red emissive europium metal-organic framework (Eu-MOF) and blue emissive gold nanoclusters (AuNCs). The presence of ATP causes the decomposition of Eu-MOF owing to strong affinity of Eu3+ with ATP. As a result, the red emission of Eu-MOF decreases while the blue emission of AuNCs remains unchanged. The distinct red/blue emission intensity change enables the establishment of a ratiometric fluorescent and visual sensor of ATP. Moreover, a fluorescent paper-based sensor was fabricated with the ratiometric ATP probes, which enabled easy-to-use and visual detection of ATP in serum samples with a smartphone.  相似文献   

14.
We have connected a borondipyrromethene (BODIPY) donor to the 5′ position of a tetramethylrhodamine (TMR) acceptor to form a high efficiency (over 99 %) intramolecular fluorescence resonance energy transfer (FRET) cassette, BODIPY–rhodamine platform (BRP). While the good spectral overlap between the emission of BODIPY and the absorption of TMR was one favorable factor, another feature of this FRET system was the rigid and short biphenyl spacer that favored efficient through‐bond energy transfer. More importantly, in this system, the 2′‐carboxyl group of the rhodamine unit was preserved for the further modifications, which was as convenient as those carbonyl groups on the original rhodamines without connection to donors. For this reason, BRP is clearly differentiated from the previous ratiometric sensors based on donor rhodamine systems. To illustrate its value as a versatile platform, we introduced typical Hg2+ receptors into BRP, through convenient one‐pot reactions on the 2′‐carboxyl group, and successfully developed two ratiometric sensors, BRP‐1 and BRP‐2, with different spirocyclic receptors that recognized Hg2+ on different reaction mechanisms. Upon excitation at a single wavelength (488 nm), at which only BODIPY absorbed, both of the FRET sensors exhibited clear Hg2+‐induced changes in the intensity ratio of the two strong emission bands of BODIPY and rhodamine. It should be noted that these ratiometric Hg2+ sensors exhibited excellent sensitivity and selectivity Hg2+, as well as pH insensitivity, which was similar to the corresponding ‘turn‐on’ rhodamine sensors. While both ratiometric probes were applicable for Hg2+ imaging in living cells, BRP‐1 exhibited higher sensitivity and faster responses than BRP‐2. Our investigation indicated that on a versatile platform, such as BRP, a large number of highly efficient ratiometric sensors for transition‐metal ions could be conveniently developed.  相似文献   

15.
Two-photon absorption (TPA) dyes with intense fluorescence can be used to detect small chemical species and as sensors and bioimaging probes for specific analytes. Various TPA dyes responding to a number of external stimuli have been reported. Among them, biologically important anionic species have not been used as agents to control TPA properties because their direct electronic influences on the transition dipole moments of dyes are typically small. In this study, dipyrrolyldiketone BF2 complexes substituted with π-extended units exhibited efficient TPA properties that could be regulated by conformation changes induced by anion binding. The TPA intensity decreased to 1/5 of the original intensity upon anion binding, which was much larger than that observed for one-photon absorption. Anion detection was achieved by a change in the emission intensity of spatially resolved spots of two-photon-excited fluorescence (TPEF) in the sample. Experimental and theoretical studies were performed to understand the mechanism of the TPA property control and showed that the drastic changes in the transition dipole moments upon conformation changes between the straight and bending forms of the π-electronic systems caused the TPA and TPEF intensities drop.  相似文献   

16.
A pyrene-terpyridine-Zn conjugate has been synthesized and characterized, where Zn2+ acts as an electron acceptor to enhance molecular ICT with a large emission red-shift (>100 nm). It showed a ratiometric fluorescence change upon addition of phosphate anions in buffered aqueous solution. The selective response to phosphates or pyrophosphates involved ICT and ligand competition processes.  相似文献   

17.
Developing deep-blue thermally activated delayed fluorescence (TADF) emitters with both high efficiency and color purity remains a formidable challenge. Here, we proposed a design strategy by integrating asymmetric oxygen-boron-nitrogen (O−B−N) multi-resonance (MR) unit into traditional N−B−N MR molecules to form a rigid and extended O−B−N−B−N MR π-skeleton. Three deep-blue MR-TADF emitters of OBN , NBN and ODBN featuring asymmetric O−B−N, symmetric N−B−N and extended O−B−N−B−N MR units were synthesized through the regioselective one-shot electrophilic C−H borylation at different positions of the same precursor. The proof-of-concept emitter ODBN exhibited respectable deep-blue emission with Commission International de l′Eclairage coordinate of (0.16, 0.03), high photoluminescence quantum yield of 93 % and narrow full width at half maximum of 26 nm in toluene. Impressively, the simple trilayer OLED employing ODBN as emitter achieved a high external quantum efficiency up to 24.15 % accompanied by a deep blue emission with the corresponding CIE y coordinate below 0.1.  相似文献   

18.
《Tetrahedron letters》2014,55(51):7102-7105
A set of tetracyanoethylene (TCNE) substituted triphenylamine analogues (46) exhibiting strong intramolecular charge transfer (ICT) were designed and synthesized by the [2+2] cycloaddition–retroelectrocyclization reaction of 3 (tris-(4-phenylethynyl-phenyl)-amine) with TCNE. The reaction was found to be temperature dependent. The blue shift in the π  π1 transition and intramolecular charge transfer (ICT) in amines 46 were found to be directly proportional to the number of TCNE units. The computational study shows good agreement with the experimental results and reveals that as the number of TCNE units in amine increases, HOMO–LUMO gap increases.  相似文献   

19.
A novel molecular thermometer with ratiometric fluorescence readout was designed and synthesized. Within a sensing temperature range of 33 to 41 °C, the fluorescence color of the nanothermometer changes from blue to green. The ratiometric change magnitude is about 8.7-fold, rendering the visual differentiation of color by the naked eyes feasible.  相似文献   

20.
Jiang J  Jiang H  Liu W  Tang X  Zhou X  Liu W  Liu R 《Organic letters》2011,13(18):4922-4925
A colorimetric and ratiometric fluorescent probe for the palladium species has been developed based on the Pd(0)-catalyzed cleavage of an allyoxycarbonyl group of amines under mild conditions. The probe displays a highly sensitive and selective response with significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green), through the ICT process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号