首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A family of germyl rhodium complexes derived from the PGeP germylene 2,2’-bis(di-isopropylphosphanylmethyl)-5,5’-dimethyldipyrromethane-1,1’-diylgermanium(II), Ge(pyrmPiPr2)2CMe2 ( 1 ), has been prepared. Germylene 1 reacted readily with [RhCl(PPh3)3] and [RhCl(cod)(PPh3)] (cod=1,5-cyclooctadiene) to give, in both cases, the PGeP-pincer chloridogermyl rhodium(I) derivative [Rh{κ3P,Ge,P-GeCl(pyrmPiPr2)2CMe2}(PPh3)] ( 2 ). Similarly, the reaction of 1 with [RhCl(cod)(MeCN)] afforded [Rh{κ3P,Ge,P-GeCl(pyrmPiPr2)2CMe2}(MeCN)] ( 3 ). The methoxidogermyl and methylgermyl rhodium(I) complexes [Rh{κ3P,Ge,P-GeR(pyrmPiPr2)2CMe2}(PPh3)] (R=OMe, 4 ; Me, 5 ) were prepared by treating complex 2 with LiOMe and LiMe, respectively. Complex 5 readily reacted with CO to give the carbonyl rhodium(I) derivative [Rh{κ3P,Ge,P-GeR(pyrmPiPr2)2CMe2}(CO)] ( 6 ), with HCl, HSnPh3 and Ph2S2 rendering the pentacoordinate methylgermyl rhodium(III) complexes [RhHX{κ3P,Ge,P-GeMe(pyrmPiPr2)2CMe2}] (X=Cl, 7 ; SnPh3, 8 ) and [Rh(SPh)23P,Ge,P-GeMe(pyrmPiPr2)2CMe2}] ( 9 ), respectively, and with H2 to give the hexacoordinate derivative [RhH23P,Ge,P-GeMe(pyrmPiPr2)2CMe2}(PPh3)] ( 10 ). Complexes 3 and 5 are catalyst precursors for the hydroboration of styrene, 4-vinyltoluene and 4-vinylfluorobenzene with catecholborane under mild conditions.  相似文献   

2.
An efficient synthesis of 2-di-tert-butylphosphanylmethylpyrrole (HpyrmPtBu2), by treating 2-dimethylaminomethylpyrrole (HpyrmNMe2) with tBu2PH at 135 °C in the absence of any solvent, has allowed the preparation of the new PGeP germylene Ge(pyrmPtBu2)2 ( 1 ), by treating [GeCl2(dioxane)] with LipyrmPtBu2, in which the Ge atom is stabilized by intramolecular interactions with one (solid state) or both (solution) of its phosphane groups. Reactions of germylene 1 with Group 10 metal dichlorido complexes containing easily displaceable ligands have led to [MCl{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] [M=Ni ( 2 ), Pd ( 3 ), Pt ( 4 )], which have an unflawed square-planar metal environment. Treatment of germylene 1 with [AuCl(tht)] (tht=tetrahydrothiophene) rendered [Au{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] ( 5 ), which is a rare case of a T-shaped gold(I) complex. The hydrolysis of 5 gave the linear gold(I) derivative [Au(κP-HpyrmPtBu2)2]Cl ( 6 ). Complexes 2 – 5 contain a PGeP pincer chloridogermyl ligand that arises from the insertion of the Ge atom of germylene 1 into a M−Cl bond of the corresponding metal reagent. The bonding in these molecules has been studied by DFT/NBO/QTAIM calculations. These results demonstrate that the great flexibility of germylene 1 makes it a better precursor to PGeP pincer complexes than the previously known germylenes of this type.  相似文献   

3.
The aromatic osmacyclopropenefuran bicycles [OsTp{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(PiPr3)]BF4 (Tp=hydridotris(1‐pyrazolyl)borate) and [OsH{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(CO)(PiPr3)2]BF4, with the metal fragment in a common vertex between the fused three‐ and five‐membered rings, have been prepared via the π‐allene intermediates [OsTp(η2‐CH2=CCHCO2Et)(OCMe2)(PiPr3)]BF4 and [OsH(η2‐CH2=CCHCO2Et)(CO)(OH2)(PiPr3)2]BF4, and their aromaticity analyzed by DFT calculations. The bicycle containing the [OsH(CO)(PiPr3)2]+ metal fragment is a key intermediate in the [OsH(CO)(OH2)2(PiPr3)2]BF4‐catalyzed regioselective anti‐Markovnikov hydration of ethyl buta‐2,3‐dienoate to ethyl 4‐hydroxycrotonate.  相似文献   

4.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

5.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

6.
Mono‐ and Dinuclear Rhodium Complexes with Arsino(phosphino)methanes in Different Coordination Modes The cyclooctadiene complex [Rh(η4‐C8H12)(κ2tBu2AsCH2PiPr2)](PF6) ( 1a ) reacts with CO and CNtBu to give the substitution products [Rh(L)22tBu2AsCH2PiPr2)](PF6) ( 2 , 3 ). From 1a and Na(acac) in the presence of CO the neutral compound [Rh(κ2‐acac)(CO)(κ‐PtBu2AsCH2PiPr2)] ( 4 ) is formed. The reactions of 1a , the corresponding B(ArF)4‐salt 1b and [Rh(η4‐C8H12)(κ2iPr2AsCH2PiPr2)](PF6) ( 5 ) with acetonitrile under a H2 atmosphere affords the complexes [Rh(CH3CN)22‐R2AsCH2PiPr2)]X ( 6a , 6b , 7 ), of which 6a (R = tBu; X = PF6) gives upon treatment with Na(acac‐f6) the bis(chelate) compound [Rh(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 8 ). From 8 and CH3I a mixture of two stereoisomers of composition [Rh(CH3)I(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 9/10 ) is generated by oxidative addition, and the molecular structure of the racemate 9 has been determined. The reactions of 1a and 5 with CO in the presence of NaCl leads to the formation of the “A‐frame” complexes [Rh2(CO)2(μ‐Cl)(μ‐R2AsCH2PiPr2)2](PF6) ( 11 , 12 ), which have been characterized crystallographically. From 11 and 12 the dinuclear substitution products [Rh2(CO)2(μ‐X)(μ‐R2AsCH2PiPr2)2](PF6) ( 13 ‐ 16 ) are obtained by replacing the bridging chloride for bromide, hydride or hydroxide, respectively. While 12 (R = iPr) reacts with NaI to give the related “A‐frame” complex 18 , treatment of 11 (R = tBu) with NaI yields the mononuclear chelate compound [RhI(CO)(κ2tBu2AsCH2PiPr2)] ( 20 ). The reaction of 20 with CH3I affords the acetyl complex [RhI2{C(O)CH3}(κ2tBu2AsCH2PiPr2)] ( 21 ) with five‐coordinate rhodium atom.  相似文献   

7.
A facile, one-pot synthesis of [Na(OC≡As)(dioxane)x] (x=2.3–3.3) in 78 % yield is reported through the reaction of arsine gas with dimethylcarbonate in the presence of NaOtBu and 1,4-dioxane. It has been employed for the synthesis of the first arsaketenyl-functionalized germylene [LGeAsCO] ( 2 , L=CH[CMeN(Dipp)]2; Dipp=2,6-iPr2C6H3) from the reaction with LGeCl ( 1 ). Upon exposure to ambient light, 2 undergoes CO elimination to form the 1,3-digerma-2,4-diarsacyclobutadiene [L2Ge2As2] ( 3 ), which contains a symmetric Ge2As2 ring with ylide-like Ge=As bonds. Remarkably, the CO ligand located at the arsenic center of 2 can be exchanged with PPh3 or an N-heterocyclic carbene iPrNHC donor (iPrNHC=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) to afford the novel germylidenylarsinidene complexes [LGe-AsPPh3] ( 4 ) and [LGe-As(iPrNHC)] ( 5 ), respectively, demonstrating transition-metal-like ligand substitution at the arsinidene-like As atom. The formation of 2 – 5 and their electronic structures have been studied by DFT calculations.  相似文献   

8.
The reaction of [PtCl2(COD)] (COD=1,5-cyclooctadiene) with diisopropyl-2-(3-methyl)indolylphosphine (iPr2P(C9H8N)) led to the formation of the platinum(ii ) chlorido complexes, cis-[PtCl2{iPr2P(C9H8N)}2] ( 1 ) and trans-[PtCl2{iPr2P(C9H8N)}2] ( 2 ). The cis-complex 1 reacted with NEt3 yielding the complex cis-[PtCl{κ2-(P,N)-iPr2P(C9H7N)}{iPr2P(C9H8N)}] ( 3 ) bearing a cyclometalated κ2-(P,N)-phosphine ligand, while the isomer 2 with a trans-configuration did not show any reactivity towards NEt3. Treatment of 1 or 3 with (CH3)4NF (TMAF) resulted in the formation of the twofold cyclometalated complex cis-[Pt{κ2-(P,N)-iPr2P(C9H7N)}2] ( 4 ). The molecular structures of the complexes 1–4 were determined by single-crystal X-ray diffraction. The fluorido complex cis-[PtF{κ2-(P,N)-iPr2P(C9H7N)}{iPr2P(C9H8N)}] ⋅ (HF)4 ( 5 ⋅ (HF)4) was formed when complex 4 was treated with different hydrogen fluoride sources. The Pt(ii ) fluorido complex 5 ⋅ (HF)4 exhibits intramolecular hydrogen bonding in its outer coordination sphere between the fluorido ligand and the NH group of the 3-methylindolyl moiety. In contrast to its chlorido analogue 3 , complex 5 ⋅ (HF)4 reacted with CO or the ynamide 1-(2-phenylethynyl)-2-pyrrolidinone to yield the complexes trans-[Pt(CO){κ2-(P,C)-iPr2P(C9H7NCO)}{iPr2P(C9H8N)}][F(HF)4] ( 7 ) and a complex, which we suggest to be cis-[Pt{C=C(Ph)OCN(C3H6)}{κ2-(P,N)-iPr2P(C9H7N)}{iPr2P(C9H8N)}][F(HF)4] ( 9 ), respectively. The structure of 9 was assigned on the basis of DFT calculations as well as NMR and IR data. Hydrogen bonding of HF and NH to fluoride was proven to be crucial for the existence of 7 and 9 .  相似文献   

9.
Reaction of N-heterocyclic carbene (NHC)-stabilized PGeP-type germylene Ge{o-(PiPr2)C6H4}2MeIiPr ( 1 ) (MeIiPr=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with Ni(cod)2 gave pincer germylene complex Ni[Ge{o-(PiPr2)C6H4}2](MeIiPr) ( 2 ), in which the Ge center of 2 is significantly pyramidalized. Theoretical calculation on 2 predicted the ambiphilicity of the germanium center, which was confirmed by reactivity studies. Thus, complex 2 reacted with both Lewis base MeIMe (MeIMe=1,3,4,5-tetramethylimidazol-2-ylidene) and Lewis acid BH3⋅SMe2 at the germanium center to afford the adducts Ni[Ge{o-(PiPr2)C6H4}2MeIMe](MeIiPr) ( 3 ) and Ni[Ge{o-(PiPr2)C6H4}2⋅BH3](MeIiPr) ( 4 ), respectively. Furthermore, the former was slowly converted to dinuclear complex Ni2[Ge{o-(PiPr2)C6H4}2]2(MeIMe)2 ( 5 ) at room temperature. Complex 5 can be regarded as a dimer of the MeIMe analog of 2 with a Ni-Ge-Ge-Ni linkage.  相似文献   

10.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

11.
The saturated trihydride IrH33-P,O,P-[xant(PiPr2)2]} ( 1 ; xant(PiPr2)2=9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) activates the B−H bond of two molecules of pinacolborane (HBpin) to give H2, the hydride-boryl derivatives IrH2(Bpin){κ3-P,O,P-[xant(PiPr2)2]} ( 2 ) and IrH(Bpin)23-P,O,P-[xant(PiPr2)2]} ( 3 ) in a sequential manner. Complex 3 activates a C−H bond of two molecules of benzene to form PhBpin and regenerates 2 and 1 , also in a sequential manner. Thus, complexes 1 , 2 , and 3 define two cycles for the catalytic direct C−H borylation of arenes with HBpin, which have dihydride 2 as a common intermediate. C−H bond activation of the arenes is the rate-determining step of both cycles, as the C−H oxidative addition to 3 is faster than to 2 . The results from a kinetic study of the reactions of 1 and 2 with HBpin support a cooperative function of the hydride ligands in the B−H bond activation. The addition of the boron atom of the borane to a hydride facilitates the coordination of the B−H bond through the formation of κ1- and κ2-dihydrideborate intermediates.  相似文献   

12.
We describe the results of a study on the stabilities of pincer‐type nickel complexes relevant to catalytic hydroalkoxylation and hydroamination of olefins, C? C and C? X couplings, and fluorination of alkyl halides. Complexes [(POCsp3OP)NiX] are stable for X=OSiMe3, OMes (Mes=1,3,5‐Me3C6H2), NPh2, and CC? H, whereas the O(tBu) and N(SiMe3)2 derivatives decompose readily. The phenylacetylide derivative transforms gradually into the zero‐valent species cis‐[{κPCC′‐(iPr2POCH2CHCH2)}Ni{η2CC′‐(iPr2P(O)CCPh)}]. Likewise, attempts to prepare [(POCsp3OP)NiF] gave instead the zwitterionic trinuclear species [{(η3‐allyl)Ni}2‐{μ,κPO‐(iPr2PO)4Ni}]. Characterization of these two complexes provides concrete examples of decomposition processes that can dismantle POCsp3OP‐type pincer ligands by facile C? O bond rupture. These results serve as a cautionary tale for the inherent structural fragility of pincer systems bearing phosphinite donor moieties, and provide guidelines on how to design more robust analogues.  相似文献   

13.
A MHC6 complex of a platinum group metal with a capped octahedral arrangement of donor atoms around the metal center has been characterized. This osmium compound OsH{κ2C,C‐(PhBIm‐C6H4)}3, which reacts with HBF4 to afford the 14 e? species [Os{κ2C,C‐(PhBIm‐C6H4)}(Ph2BIm)2]BF4 stabilized by two agostic interactions, has been obtained by reaction of OsH6(PiPr3)2 with N,N′‐diphenylbenzimidazolium chloride ([Ph2BImH]Cl) in the presence of NEt3. Its formation takes place through the C,C,C‐pincer compound OsH23C,C,C‐(C6H4‐BIm‐C6H4)}(PiPr3)2, the dihydrogen derivative OsCl{κ2C,C‐(PhBIm‐C6H4)}(η2‐H2)(PiPr3)2, and the five‐coordinate osmium(II) species OsCl{κ2C,C‐(PhBIm‐C6H4)}(PiPr3)2.  相似文献   

14.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

15.
Silver(I) dialkyl/alkylene dithiophosphates of the types [Ag{S2P(OR)2}] and [Ag{S2P(OGO)}] (where R = –Pr n ; G = –CMe2CH2CHMe–, –CH2CMe2CH2–, –CMe2CMe2– or –CH2CH2CHMe–) have been prepared by treating an aqueous solution of AgNO3 with ammonia salts of the respective dithiophosphoric acid. The derivatives form 1:1 adducts readily with 2,2-bipyridine or Ph3P in CH2Cl2 solution. These novel complexes have been characterized by elemental analyses, molecular weight measurements and spectral (i.r., 1H- and 31P-n.m.r.) studies. The crystal structure of [Ag{S2POCH2CMe2CH2O · PPh3]2 · 2H2O exhibits an unsymmetrical attachment of the silver(I) to the ligand moiety.  相似文献   

16.
Divergent reactivity of organometallic rhodium(I) complexes, which led to the isolation of neutral rhodium silylenes, is described. Addition of PhRSiH2 (R=H, Ph) to the rhodium cyclooctene complex (iPrNNN)Rh(COE) (1-COE; iPrNNN=2,5-[iPr2P=N(4-iPrC6H4)]2N(C6H2), COE=cyclooctene) resulted in the oxidative addition of an Si−H bond, providing rhodium(III) silyl hydride complexes (iPrNNN)Rh(H)SiHRPh (R=H, 2 -SiH2Ph; Ph, 2 -SiHPh2). When the carbonyl complex (iPrNNN)Rh(CO) ( 1 -CO) was treated with hydrosilanes, base-stabilized rhodium(I) silylenes κ2-N,N-(iPrNNN)(CO)Rh=SiRPh (R=H, 3 -SiHPh; Ph, 3 -SiPh2) were isolated and characterized using multinuclear NMR spectroscopy and X-ray crystallography. Both silylene species feature short Rh−Si bonds [2.262(1) Å, 3 -SiHPh; 2.2702(7) Å, 3 -SiPh2] that agree well with the DFT-computed structures. The overall reaction led to a change in the iPrNNN ligand bonding mode (κ3→κ2) and loss of H2 from PhSiRH2, as corroborated by deuterium labelling experiments.  相似文献   

17.
The reaction of the NHC iPr2Im [NHC=N‐heterocyclic carbene, iPr2Im = 1, 3‐bis(isopropyl)imidazolin‐2‐ylidene] with freshly prepared NiBr2 in thf or dme results in the formation of the air stable nickel(II) complex trans‐[Ni(iPr2Im)2Br2] ( 2 ). Complex 2 was structurally characterized. Thermal analysis (DTA/TG) reveals a very high decomposition temperature of 298 °C. Reduction of 2 with sodium or C8K in the presence of the olefins COD (cyclooctadiene) or COE (cyclooctene) affords the highly reactive compounds [Ni2(iPr2Im)4(COD)] ( 1 ) and [Ni(iPr2Im)2(COE)] ( 4 ). Alkylation of 2 with organolithiums leads to the formation of trans‐[Ni(iPr2Im)2(R)2] [R = Me ( 5 ), CH2SiMe3 ( 6 )], whereas the reaction of 2 with LiCp* [Cp* = (η5‐C5(CH3)5)] at 80 °C causes the loss of one NHC ligand and affords [(η5‐C5(CH3)5)Ni(iPr2Im)Br] ( 7 ).  相似文献   

18.
Abstract

Dichlorodimethoxymolybdenum(V) 0.0′-dialkyl dithiophosphates, MoCI2(OMe)2S2,P(OR)2 (where R = Et, Prn, Pri,Bui) and dichlorodimethoxymolybdenum (V), 0,0′-alkylene dithiophosphates, MoCI2(OMe)2S2POGO (where G = CH2CMe2-, -CMe2,CMe2-,-CHMeCHMe-) have been synthesized by the reactions of MoCI3 (OMe)2, with sodium (or ammonium) salts of the corresponding dithiophosphoric acids.

These complexes have been characterized on the basis of elemental analyses, 31P NMR spectral data, magnetic studies and molecular weight determinations, which show their paramagnetic as well as dimeric nature. Based on these data, plausible structures containing hepta-coordinated molybdenum have been suggested for these compounds.  相似文献   

19.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

20.
[K{Al(NONDipp)}]2 (NONDipp=[O(SiMe2NDipp)2]2?, Dipp=2,6‐iPr2C6H3) reacts with CS2 to afford the trithiocarbonate species [K(OEt2)][Al(NONDipp)(CS3)] 1 or the ethenetetrathiolate complex, [K{Al(NONDipp)(S2C)}]2 [ 3 ]2. The dimeric alumoxane [K{Al(NONDipp)(O)}]2 reacts with carbon monoxide to afford the oxygen analogue of 3 , [K{Al(NONDipp)(O2C)}]2 [ 4 ]2 containing the hitherto unknown ethenetetraolate ligand, [C2O4]4?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号