首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three luminescent mononuclear RuII compounds, [RuII(bpy)2( L1 )](BF4) ( 1 ), [RuII(bpy)2( L2 )](BF4) ( 2 ), and the neutral compound [RuII(bpy)2( L3 )] ( 3 ), were obtained, by treatment of [RuII(bpy)2Cl2] with the tetrazolate (tz)-containing ligands L1 – L3 . All the compounds were well characterized by IR, UV/Vis, and 1H NMR and their redox properties were also investigated by cyclic voltammogram. The crystal structure of 3 was determined by X-ray crystallography and it clearly shows that the RuII ion is octahedrally coordinated by two bpy ligands and a deprotonated L3 ligand. After introduction of these tz ligands, 1 – 3 are more sensitive towards the change of micro-environment of solvents as compared with that of [RuII(bpy)3]2+. This effect is most obvious in 3 , since it contains a 2 ligand L3 . The slight modification of diimine ligand make these complexes have potential applications as sensors.  相似文献   

2.
DFT calculations are performed on [RuII(bpy)2(tmen)]2+ ( M1 , tmen=2,3‐dimethyl‐2,3‐butanediamine) and [RuII(bpy)2(heda)]2+ ( M2 , heda=2,5‐dimethyl‐2,5‐hexanediamine), and on the oxidation reactions of M1 to give the C?C bond cleavage product [RuII(bpy)2(NH=CMe2)2]2+ ( M3 ) and the N?O bond formation product [RuII(bpy)2(ONCMe2CMe2NO)]2+ ( M4 ). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [RuII(bpy)2(tmen)]2+ ( M1 ) can undergo oxidative deprotonation to generate Ru‐bis(imide) [Ru(bpy)2(tmen‐4 H)]+ ( A ) or Ru‐imide/amide [Ru(bpy)2(tmen‐3 H)]2+ ( A′ ) intermediates. Both A and A′ are prone to C?C bond cleavage, with low reaction barriers (ΔG) of 6.8 and 2.9 kcal mol?1 for their doublet spin states 2 A and 2 A′ , respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on 2 A′ is relatively high (14.2 kcal mol?1). These calculation results are in agreement with the formation of the RuII‐bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with CeIV in aqueous solution to afford the RuII‐dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI‐MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.  相似文献   

3.
The synthesis and characterisation of a series of [RuII(bpy)2L] and [Ir(ppy)2L] complexes containing ligands L with the potential to engage in triple hydrogen bonding interactions is described. L1 and L2 comprise pyridyl triazole chelating units with pendant diaminotriazine units, capable of donor‐acceptor‐donor (DAD) hydrogen bonding, while L3 and L4 contain ADA hydrogen bonding units proximal to N^N and N^O cleating sites, respectively. X‐ray crystallography shows the L1 and L2 containing RuII complexes to assemble via hydrogen bonding dimers, while [RuII(bpy)2L 4 ] assembles via extended hydrogen bonding motifs to form one dimensional chains. By contrast, the expected hydrogen bonding patterns are not observed for the RuII and IrIII complexes of L3 . Spectroscopic studies show that the absorption spectra of the complexes result from combinations of MLCT and LLCT transitions. The L1 and L2 complexes of IrIII and RuII complexes are emissive in the solid state and it seems likely that hydrogen bonding to complementary species may facilitate tuning of their 3ILCT emission. Low frequency Raman spectra provide further evidence for ordered interactions in the solid state for the L4 complexes, consistent with the results from X‐ray crystallography.  相似文献   

4.
Herein, a catalytic chemosensing assay (CCA), based on a bimetallic complex, [RuII(bpy)2(CN)2]2(CuII)2 (bpy=2,2′-bipyridine), is described. This complex integrates a task-specific catalyst (CuI-catalyst) and a signaling unit ([RuII(bpy)2(CN)2]) to specifically hydrolyze methyl parathion, a highly toxic organophosphate (OP) pesticide. The bimetallic complex catalyzed the hydrolysis of the phosphate ester to generate o,o-dimethyl thiophosphate (DTP) anion and 4-nitrophenolate. Intrinsically, 4-nitrophenolate absorbed UV/Vis light at λmax=400 nm, creating the first level of the chemosensing signal. DTP interacted with the original complex to displace the chromophore, [RuII(bpy)2(CN)2], which was monitored by spectrofluorometry; this was classified as the second level of chemosensing signal. By integrating both spectroscopic and spectrofluorometric signals with a simple AND logic gate, only methyl parathion was able to provide a positive response. Other aromatic and aliphatic OP pesticides (diazinon, fenthion, meviphos, terbufos, and phosalone) and 4-nitrophenyl acetate provided negative responses. Furthermore, owing to the metal-catalyzed hydrolysis of methyl parathion, the CCA system led to the detoxification of the pesticide. The CCA system also demonstrated its catalytic chemosensing properties in the detection of methyl parathion in real samples, including tap water, river water, and underground water.  相似文献   

5.
Subtle ligand modifications on RuII-polypyridyl complexes may result in different excited-state characteristics, which provides the opportunity to tune their photo-physicochemical properties and subsequently change their biological functions. Here, a DNA-targeting RuII-polypyridyl complex (named Ru1 ) with highly photosensitizing 3IL (intraligand) excited state was designed based on a classical DNA-intercalator [Ru(bpy)2(dppz)] ⋅ 2 PF6 by incorporation of the dppz (dipyrido[3,2-a:2′,3′-c]phenazine) ligand tethered with a pyrenyl group, which has four orders of magnitude higher potency than the model complex [Ru(bpy)2(dppz)] ⋅ 2 PF6 upon light irradiation. This study provides a facile strategy for the design of organelle-targeting RuII-polypyridyl complexes with dramatically improved photobiological activity.  相似文献   

6.
The luminophore Ru(bpy)2(dcbpy)2+ (bpy=2,2’-bipyridine; dcbpy=4,4’-dicarboxy-2,2’-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)32+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and “free” IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104 s−1) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2⊂NS-RuCh.  相似文献   

7.
The interactions of potentially dinucleating bridging functionalities (I–VI) with the ruthenium-bis(bypyridine) precursor [RuII(bpy)2(EtOH)2]2+have been explored. The bridging functionsI,II andVI directly result in the expected dinuclear complexes of the type [(bpy)2RuIILnRuII(bpy)2]z+ (1,2,7 and 8) (n = 0,z =4 andn = -2,z = 2). The bridging ligandIII undergoes N-N or N-C bond cleavage reaction on coordination to the RuII(bpy)2 core which eventually yields a mononuclear complex of the type [(bpy)2RuII(L)]+,3, where L =-OC6H3(R)C(R′)=N-H. However, the electrogenerated mononuclear ruthenium(III) congener, 3+in acetonitrile dimerises to [(bpy)2RuIII {-OC6H3(R)C(R′)=N-N=(R′)C(R)C6H3O-}RuIII(bpy)2]4+ (4). In the presence of a slight amount of water content in the acetonitrile solvent the dimeric species (4) reduces back to the starting ruthenium(II) monomer (3). The preformed bridging ligandIV undergoes multiple transformations on coordination to the Ru(bpy)2 core, such as hydrolysis of the imine groups ofIV followed by intermolecular head-to-tail oxidative coupling of the resultant amino phenol moieties, which in turn results in a new class of dimeric complex of the type [(bpy)2RuII -OC6H4-N=C6H3(=NH)O-RuII(bpy)2]2+ (5). In5, the bridging ligand comprises of twoN,O chelating binding sites each formally in the semiquinone level and there is ap-benzoquinonediimine bridge between the metal centres. In complex6, the preformed bridging ligand, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, H2L (V) undergoes oxidative dehydrogenation to aromatic tetrazine based bridging unit, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine, L. The detailed spectroelectrochemical aspects of the complexes have been studied in order to understand the role of the bridging units towards the intermetallic electronic coupling in the dinuclear complexes.  相似文献   

8.
The catalytic chemosensing assay (CCA), a new indicator displacement assay, was developed for selective detection of methomyl, a highly toxic pesticide. Trimetallic complex {[FeII(dmbpy)(CN)4]-[PtII(DMSO)Cl]2-[RuII(bpy)2(CN)2]} ( 1 ; dmbpy=4,4′-dimethyl-2,2′-bipyridine, bpy=2,2′-bipyridine) was synthesized as a task-specific catalyst to initially reduce and degrade methomyl to CH3SH/CH3NH2/CH3CN/CO2. The thus-produced CH3SH interacts with the trimetallic complex to displace the cis-[RuII(bpy)2(CN)2] luminophore for monitoring. Other pesticides, including organophosphates and similar carbamate pesticides, remained intact under the same catalytic conditions; a selective sensing signal is only activated when 1 recognizes methomyl. Furthermore, 1 can be applied to detect methomyl in real water samples. In the luminescent mode of the assay, the method detection limit (MDL) of 1 for methomyl (LD50=17 mg kg−1) was 1.12 mg L−1.  相似文献   

9.
The salts [RuII(L–L)3](CF3SO3)2 (L–L = bpy or phen) have been prepared in high yields via reactions of [RuII(DMF)6](CF3SO3)2 (DMF = N,N-dimethylformamide), generated in situ by reduction of [RuIII(DMF)6]-(CF3SO3)3, with an excess of bpy or phen at room temperature in DMF solutions.  相似文献   

10.
Detailed studies on hydrogen evolution by decamethylruthenocene ([Cp*2RuII]) highlighted that metallocenes are capable of photoreducing hydrogen without the need for an additional sensitizer. Electrochemical, gas chromatographic, and spectroscopic (UV/Vis, 1H and 13C NMR) measurements corroborated by DFT calculations indicated that the production of hydrogen occurs by a two-step process. First, decamethylruthenocene hydride [Cp*2RuIV(H)]+ is formed in the presence of an organic acid. Subsequently, [Cp*2RuIV(H)]+ is reversibly reduced in a heterolytic reaction with one-photon excitation leading to a first release of hydrogen. Thereafter, the resultant decamethylruthenocenium ion [Cp*2RuIII]+ is further reduced with a second release of hydrogen by deprotonation of a methyl group of [Cp*2RuIII]+. Experimental and computational data show spontaneous conversion of [Cp*2RuII] to [Cp*2RuIV(H)]+ in the presence of protons. Calculations highlight that the first reduction is endergonic (ΔG0=108 kJ mol−1) and needs an input of energy by light for the reaction to occur. The hydricity of the methyl protons of [Cp*2RuII] was also considered.  相似文献   

11.
Abstract

New dinuclear asymmetric complexes of ruthenium and rhenium, of formula [(bpy)(CO)3 ReI(4,4′-bpy)RuII/III(NH3)5]3+/4+ have been prepared and characterized by spectroscopic and electrochemical techniques. In the mixed-valent species [ReI, RuIII], the back electron transfer reaction RuII → ReII, that occurs after light excitation, is predicted to be in the Marcus inverted region. This fact is consistent with the observed quenching of the luminiscence of the Re chromophore in [(bpy)(CO)3ReI(4,4′-bpy)RuIII(NH3)5]4+, when compared to the parent complex [(bpy)(CO)3ReI(4,4′-bpy)]+. A theoretical treatment due to Creutz, Newton and Sutin has been successfully applied to predict the electronic coupling element in the mixed-valent complex.  相似文献   

12.
The mechanism of photoinduced hydrogen evolution from water driven by the first photo‐hydrogen‐evolving molecular catalyst ( 1 ), given by a coupling of [Ru(bpy)2(5‐amino‐phen)]2+ and [PtCl2(4,4′‐dicarboxy‐bpy)] (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), was investigated in detail. The H2 evolution rate was found to obey Michaelis–Menten enzymatic kinetics with regard to the concentration of EDTA (ethylenediamine tetra‐acetic acid disodium salt, sacrificial electron donor), which indicates that an ion‐pair formation between the dicationic 1 and the dianionic form of EDTA (pH 5) is a key step leading to H2 formation. A 2:1 coupling product of 1 and ethylenediamine (i.e., a {RuII2PtII2} complex 2 ) was found to show significantly higher photo‐hydrogen‐evolving (PHE) activity than 1 , which revealed the validity of the bimolecular activation proposed in our previous study. The PHE activity of 2 was also observed to be linear to the concentration of 2 , which indicates that H2 formation through the intermolecular path competes with the intramolecular path. Molecular orbital diagrams, conformational features, and Pt???H(water or acetic acid) hydrogen bonds were characterized by DFT calculations.  相似文献   

13.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

14.
Highly efficient, visible light induced photocatalytic H2 production was achieved over a TiO2 system sensitized by binuclear RuII bipyridyl (bpy) complex [Ru2(bpy)4(BL)](ClO4)2 (BL=bridging ligand) without Pt loading, which is almost unaffected by pH in aqueous solution in the wide range from pH 5.00 to 10.50, although the dye molecules can only be loosely attached to TiO2 due to the absence of terminal carboxyl groups. The photocatalyst shows remarkable long‐term stability and reproducibility of H2 evolution even after exchanging the aqueous triethanolamine solution. The amount of H2 evolved over 100 mg of photocatalyst in 27 h of irradiation corresponds to a turnover number of about 75 340, and the apparent quantum yields are estimated to be 16.8 and 7.3 % under 420 and 475 nm monochromatic light irradiation, respectively. A comparative study shows that the loosely attached dye [Ru2(bpy)4(BL)](ClO4)2 has higher photosensitization efficiency than tightly linked dyes with terminal carboxyl groups, such as [Ru2(dcbpy)4(BL)](ClO4)2 and N719. It can be rationalized by their different coordination, physicochemical, electron‐injection, and back‐transfer properties.  相似文献   

15.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

16.
Jiang  Cai-Wu  Chao  Hui  Li  Run-Hua  Li  Hong  Ji  Liang-Nian 《Transition Metal Chemistry》2002,27(5):520-525
Three RuII complexes [Ru(bpy)2(PIP)]2+, [Ru(PIP)2(bpy)]2+ and [Ru(PIP)3]2+ (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline, bpy = 2,2-bipyridine) were prepared and characterized by electrospray mass spectrometry, 1H-n.m.r, u.v.–vis. and electrochemistry. The nonlinear optical properties (NLO) of the RuII complexes were investigated by Z-scan techniques with 12 ns laser pulses at 540 nm, and all of them exhibit both NLO absorption and self-defocusing effects. The corresponding effective NLO susceptibility |3| of the complexes is in the (4.15 – 4.86) × 10–12 e.s.u. range.  相似文献   

17.
The in situ spectrocyclic voltammetric investigations of the dimeric ruthenium complex used for water oxidation, [(bpy)2(H2O)Ru–O–Ru(H2O)(bpy)2]4+ (H2O–RuIII–RuIII–OH2), were carried out in a homogeneous aqueous solution and in a Nafion membrane under different pH conditions. The in situ absorption spectra recorded for the dimer show that the dimer H2O–RuIII–RuIII–OH2 complex underwent reactions initially to give the detectable H2O–RuIII–RuIV–OH and H2O–RuIII–RuIV–OH2 complexes, and at higher positive potentials, this oxidized dimer underwent further oxidation to produce a presumably higher oxidation state RuV–RuV complex. Since this RuV–RuV complex is reduced rapidly by water molecules to H2O–RuIII–RuIV–OH2, it could not be detected by absorption spectrum. Independent of the pH conditions and homogeneous solution/Nafion membrane systems, the dimer RuIII–RuIV was detected at higher potentials, suggesting that the dimer complex acts as a three-electron oxidation catalyst. However, in the Nafion membrane system it was suggested that the dimer complex may act as a four-electron oxidation catalyst. While the dimer complex was stable under oxidation conditions, the reduction of the dimer RuIII–RuIII to RuII–RuII led to decomposition, yielding the monomeric cis-[Ru(bpy)2(H2O)2]2+.  相似文献   

18.
Eleven new complexes of the form cis-[RuII(bpy)2(LA)]4+ (bpy = 2,2′-bipyridyl; LA = a pyridinium-substituted bpy derivative) have been prepared and isolated as their PF6 salts. Characterisation involved various techniques including 1H NMR spectroscopy and MALDI mass spectrometry. The UV-Vis spectra show intense intraligand π → π absorptions and metal-to-ligand charge-transfer (MLCT) bands with two distinct maxima in the visible region. Small shifts in the MLCT bands correlate with the electron-withdrawing strength of the ligand LA. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and two or more ligand-based reductions with varying degrees of reversibility. The variations in the redox potentials correlate with changes in the structure of LA, and also with the MLCT energies. Differential pulse voltammetry allows the first reduction process for two of the complex salts to be resolved into two peaks. Single-crystal X-ray structures have been solved for three of the new complex salts and also for a pro-ligand salt. Two carboxylate-functionalised compounds have been tested as photosensitizers on TiO2-coated electrodes, but show only negligible efficiencies, in accord with expectations.  相似文献   

19.
The photoinduced hydrogen evolution reaction (HER) by decamethylruthenocene, Cp2*RuII (Cp*=C5Me5), is reported. The use of a metallocene to photoproduce hydrogen is presented as an alternative strategy to reduce protons without involving an additional photosensitizer. The mechanism was investigated by (spectro)electrochemical and spectroscopic (UV/Vis and 1H NMR) measurements. The photoactivated hydride involved was characterized spectroscopically and the resulting [Cp2*RuIII]+ species was electrochemically regenerated in situ on a fluorinated tin oxide electrode surface. A promising internal quantum yield of 25 % was obtained. Optimal experimental conditions— especially the use of weakly coordinating solvent and counterions—are discussed.  相似文献   

20.
A diverse set of 2 e/2 H+ reactions are described that interconvert [RuII(bpy)(en*)2]2+ and [RuIV(bpy)(en‐H*)2]2+ (bpy=2,2′‐bipyridine, en*=H2NCMe2CMe2NH2, en*‐H=H2NCMe2CMe2NH), forming or cleaving different O−H, N−H, S−H, and C−H bonds. The reactions involve quinones, hydrazines, thiols, and 1,3‐cyclohexadiene. These proton‐coupled electron transfer reactions occur without substrate binding to the ruthenium center, but instead with precursor complex formation by hydrogen bonding. The free energies of the reactions vary over more than 90 kcal mol−1, but the rates are more dependent on the type of X−H bond involved than the associated ΔG °. There is a kinetic preference for substrates that have the transferring hydrogen atoms in close proximity, such as ortho ‐tetrachlorobenzoquinone over its para ‐isomer and 1,3‐cyclohexadiene over its 1,4‐isomer, perhaps hinting at the potential for concerted 2 e/2 H+ transfers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号