首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70, with remarkably large binding constants (ca. 107 M−1), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These results demonstrate saddle-shaped PAHs with dibenzocycloheptatrienone motifs as structural components for new macrocycles displaying molecular receptor abilities and versatile photochemical responses with promising electron-donor properties in host-guest complexes.  相似文献   

2.
3.
A method for the facile synthesis of tetraaryl-trimethylsilylmethyl-hydro[60]fullerenes, C60Ar4(CH2SiMeR)H, has been developed in which readily prepared anionic mono(silylmethyl) fullerene is subjected to reaction conditions for organocopper-mediated multiple addition. Penta(organo)fullerene derivatives bearing different substituents and diverse functionality were synthesized in moderate to good yield under simple and mild reaction conditions. Further organic and organometallic transformations of these fullerenes allowed us to synthesize transition-metal complexes and a new methanofullerene derivative, 1,9-methano-6,12,15,18-tetraphenyl[60]fullerene, C60Ph4(CH2).  相似文献   

4.
Host–guest and supramolecular chemistry can produce water-solubilization of fullerenes such as C60, C70, and C60/70 derivatives by hydrophobic interactions, CH–π interactions, and/or π–π interactions. For materials and biomedical applications, these water-soluble host–fullerene complexes must have the following important properties: (i) high solubility, (ii) high stability, and (iii) functionalization of the host–fullerene complex. These objectives can be achieved by selection of appropriate host molecules, development of novel solubilizing methods, and synthesis of functionalized host molecules. This review describes the introduction of a variety of host molecules that can solubilize fullerenes in water. In addition, we describe applications of host–fullerene complexes, in particular using photoinduced energy- and electron-transfer processes in water.  相似文献   

5.
Refined mixed fullerenes were used as a reagent in known organic reactions instead of the pure fullerene C60 with aim to find an alternative, low-cost method for the synthesis of fullerene derivatives potentially exhibiting photoconductive properties. The isolation of C60 or C70 in clean form without admixtures requires the use of large quantities of toluene or other nonpolar solvents, polluting the environment and multiplying the production cost. 1,3-Dipolar cycloaddition of azomethine ylide to fullerite was chosen because this reaction is one of the most widely used for fullerene functionalization, producing material possibly presenting photoinducing behavior. The data showed that the use of the cheaper mixed fullerenes instead of pure C60 leads to the isolation of the same expected products with similar yields. The photoelectric properties of mixed fullerenes and their organic derivatives were also examined. A slightly semiconductive behavior was confirmed as well as a noticeable photoresponse.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

6.
The phenomena of aggregation and coalescence of fullerenes in the UV-laser ablation time-of-flight mass spectrometric investigation of C60-modified poly(N-vinylcarbazole) both in the positive and in the negative ion channels have been observed. The results indicate that in C60 chemically modified PVK (C60–PVK) copolymer the nascent fullerene fragments ruptured from main chain can easily coalesce into large fullerenes through collisions, whereas in the C60-doped PVK the aggregation and coalescence of C60 were relative weak due to nonbounding action and incomplete charge transfer behavior between C60 and PVK. Furthermore, the photoinduced electron transfer behavior between C60 and carbazole units in the C60 chemically modified poly(N-vinylcarbazole) in benzonitrile by laser flash photolysis at 355 nm has also been investigated. Efficiency of the anion radical of C60 in copolymer at 1080 nm is higher than that of the C60-doped poly(N-vinylcarbazole) polymers. The formation of a C60 radical anion may be ascribed to photoinduced electron transfer between C60 pendanted on the main chain backbone and the inter-, and intrachain carbazole units in the copolymer. © 1997 John Wiley & Sons, Inc. 35 : 1185–1190, 1997  相似文献   

7.
An integrated technology for manufacture of fullerenes was developed. It includes the following stages: synthesis of a fullerene black, extraction of a mixture of fullerenes from the black, preliminary separation of the mixture into concentrates enriched in C60 and C70 fullerenes, and production of C60 and C70 fullerenes of purity exceeding 99.5 and 98.0 wt %, respectively, from the concentrates.  相似文献   

8.
Molecular binding of fullerenes, C60 and C70, with the ZnII complex of a monomeric ring‐fused porphyrin derivative ( 2 ‐py) as a host molecule, which has a concave π‐conjugated surface, has been confirmed spectroscopically. The structures of associated complexes composed of fullerenes and 2 ‐py were explicitly established by X‐ray diffraction analysis. The fullerenes in the 2:1 complexes, which consist of two 2 ‐py molecules and one fullerene molecule, are fully covered by the concave surfaces of the two 2 ‐py molecules in the crystal structure. In contrast, in the crystal structure of the 1:1 complex consisting of one 2 ‐py molecule and one C60 molecule, the C60 molecule formed a π–π stacked pair with a C60 molecule in the neighboring complex using a partial surface, which was uncovered by the 2 ‐py molecule. Additionally, the molecular size of fullerene adopted significantly affects the 1H NMR spectral changes and the redox properties of 2 ‐py upon the molecular binding.  相似文献   

9.
Kekulé count is not as useful in predicting the thermodynamic stability of fullerenes as it is for benzenoid hydrocarbons. For example, the Kekulé count of the icosahedral C60, the most stable fullerene molecule, is surpassed by its 20 fullerene isomers (Austin et al. in Chem Phys Lett 228:478–484, 1994). This article investigates the role of Clar number in predicting the stability of fullerenes from Clar’s ideas in benzenoids. We find that the experimentally characterized fullerenes attain the maximum Clar numbers among their fullerene isomers. Our computations show that among the 18 fullerene isomers of C60 achieving the maximum Clar number (8), the icosahedral C60 has the largest Kekulé count. Hence, for fullerene isomers of C60, a combination of Clar number and Kekulé count predicts the most stable isomer.  相似文献   

10.
Photodynamic therapy (PDT) is a widely used medicinal treatment for the cancer therapy that utilizes the combination of a photosensitizer (PS) and light irradiation. In this study, we synthesized two novel C60 fullerene derivatives, compounds 1 and 2 , with a psoralen moiety that can covalently bind to DNA molecules via cross‐linking to pyrimidine under photoirradiation. Along with several fullerene derivatives, the biological properties of several novel compounds have been evaluated. Compounds 1 and 2 , which have been shown to induce the production of hydroxyl radicals using several ROS detecting reagents, induced DNA strand breaks with relatively weak activities in the in vitro detection system using a supercoiled plasmid. However, the psoralen‐bound fullerene with carboxyl groups ( 2 ) only showed genotoxicity in the genotoxicity assay system of the umu test. Compound 2 was also seen to have cytotoxic activities in several cancer cell lines at higher doses compared to water‐soluble fullerenes.  相似文献   

11.
We present a comprehensive host-guest study of four substituted and unsubstituted [10]cycloparaphenylenes with the fullerenes C60 and C70. Within this study, the influence on the complexation behavior was investigated experimentally and computationally. Due to the increased steric demand the substitution on the nanohoop results in an energetic penalty, which could be partially compensated by additional substituent-fullerene interactions. These attractive interactions are intensified in the C70 complexes and with an increased degree of substitution. For the computational investigation conformer ensembles were taken into account, providing reliable structures with Boltzmann weighted energies. An analysis of the noncovalent interactions elucidated the origin of the enhanced substituent-C70 interaction. The ellipsoid fullerene C70 can be considered as a π-extended version of C60, which is able to increase the attractive van der Waals interactions within these supramolecular complexes.  相似文献   

12.
The recent results of investigations involving the electrochemical formation of polymers containing fullerenes and studies of their properties and applications are critically reviewed. From a structural point of view, these polymers can be divided into four main categories including (1) polymers with fullerenes physically incorporated into the foreign polymeric network without forming covalent bonds, (2) fullerene homopolymers formed via [2+2] cycloaddition, (3) “pearl necklace” polymers with fullerenes mutually linked covalently to form polymer chains, and (4) “charm bracelet” polymers containing pendant fullerene substituents. The methods of electrochemical polymerization of these systems are described and assessed. The structural features and properties of the electrochemically prepared polymers and their chemically synthesized analogs are compared. Polymer films containing fullerenes are electroactive in the negative potential range due to electroreduction of the fullerene moieties. Related films made with fullerenes derivatized with electron-donating moieties as building blocks are electroactive in both the negative and positive potential range. These can be regarded as “double cables” as they exhibit both p- and n-doping properties. Fullerene-based polymers may find numerous applications. For instance, they can be used as charge-storage and energy-converting materials for batteries and photoactive units of photovoltaic cell devices, respectively. They can be also used as substrates for electrochemical sensors and biosensors. Films of the C60/Pt and C60/Pd polymers containing metallic nano-particles of platinum and palladium, respectively, effectively catalyze the hydrogenation of olefins and acetylenes. Laser ablation of electrochemically formed C60/M and C70/M polymer films (M=Pt or Ir) results in fragmentation of the fullerenes leading to the formation of hetero-fullerenes, such as [C59M]+ and [C69M]+.Dedicated to Professor Dr. Alan M. Bond on the occasion of his 60th birthday.  相似文献   

13.
Functionalized fullerenes have shown interesting biomedical applications as potential phototherapeutic agents. The hydrophobic carbon sphere of fullerene C60 can be substituted by cationic groups to obtain amphiphilic structures. These compounds absorb mainly UV light, but absorption in the visible region can be enhanced by anchoring light-harvesting antennas to the C60 core. Upon photoexcitation, fullerenes act as spin converters by effective intersystem crossing. From this excited state, they can react with ground state molecular oxygen and other substrates to form reactive oxygen species. This process leads to the formation of singlet molecular oxygen by energy transfer or superoxide anion radical by electron transfer. Photodynamic inactivation experiments indicate that cationic fullerenes are highly effective photosensitizers with applications as broad-spectrum antimicrobial agents. In these structures, the hydrophobic character of C60 improves membrane penetration, while the presence of positive charges increases the binding of the fullerene derivatives with microbial cells. Herein, we summarize the progress of antimicrobial photodynamic inactivation based on substituted fullerenes specially designed to improve the photodynamic activity.  相似文献   

14.
Water-soluble fullerenes prepared by using solubilizing agents based on natural products are promising photosensitizers for photodynamic therapy. Cyclodextrin, β-1,3-glucan, lysozyme, and liposomes can stably solubilize not only C60 and C70, but also some C60 derivatives in water. To improve the solubilities of fullerenes, specific methods have been developed for each solubilizing agent. Water-soluble C60 and C70 exhibit photoinduced cytotoxicity under near-ultraviolet irradiation, but not at wavelengths over 600 nm, which are the appropriate wavelengths for photodynamic therapy. However, dyad complexes of solubilized C60 derivatives combined with light-harvesting antenna molecules improve the photoinduced cytotoxicities at wavelengths over 600 nm. Furthermore, controlling the fullerene and antenna molecule positions within the solubilizing agents affects the performance of the photosensitizer.  相似文献   

15.
Single-stage plasma-arc synthesis of metallo-endofullerences of the types C60Pd, C60Ni, and C60Cr, whose content in a mixture of extracted fullerenes was 0.05 to 0.15 wt %, was performed. The effect of introduction of these metals into the reaction plasma on the total yield of fullerenes and on the fraction composition of the fullerene mixture was studied. The fullerene mixtures were analyzed by mass spectrometry and liquid chromatography.  相似文献   

16.
In an effort to improve understanding of dissolution behaviour of fullerenes and their simple chemical derivatives the binary systems of C60, C70 and the piperazine monoadduct of [60] fullerene C60 N2C4H8 with a series of aromatic solvents have been studied by means of DSC. In certain systems solid solvates have been found to be the thermodynamically stable phases relative to saturated solution at room temperature. Identified solid solvates were characterized by their compositions, temperatures and enthalpies of incongruent melting transitions. The regularities in thermodynamic stability of the solvated crystals have been discussed along with dissolution properties of fullerenes and the derivative. Certain correlations have been observed.  相似文献   

17.
In the present work, we report the successful synthesis and characterization of six (two new) fullerene mono- and di-pyrene derivatives based on C60 and C70 fullerenes. The synthesized compounds were characterized by spectral methods (ESI-MS, 1H-NMR, 13C-NMR, UV-Vis, FT-IR, photoluminescence and photocurrent spectroscopy). The energy of HOMO and LUMO levels and the band gaps were determined from cyclic voltammetry and compared with the theoretical values calculated according to the DFT/B3LYP/6-31G(d) and DFT/PBE/6-311G(d,p) approach for fully optimized molecular structures at the DFT/B3LYP/6-31G(d) level. Efficiency of solar cells made of PTB7: C60 and C70 fullerene pyrene derivatives were analyzed based on the determined energy levels of the HOMO and LUMO orbitals of the derivatives as well as the extensive spectral results of fullerene derivatives and their mixtures with PTB7. As a result, we found that the electronic and spectral properties, on which the efficiency of a photovoltaic cell is believed to depend, slightly changes with the number and type of pyrene substituents on the fullerene core. The efficiency of constructed solar cells largely depends on the homogeneity of the photovoltaic layer, which, in turn, is a derivative of the solubility of fullerene derivatives in the solvent used to apply these layers by spincoating.  相似文献   

18.
Takeharu Haino 《Tetrahedron》2006,62(9):2025-2035
This paper presents the synthesis of the fullerene hosts based on the calix[5]arenes and their binding properties. Calix[5]arenes 1a, 2, 3a bind C60 or C70 in organic solvents. The solvent effect of the fullerene complexation was clearly observed; the association constant decreases in a solvent with high solubility for C60. Covalently linked double-calix[5]arenes 4-6 were also investigated on their binding properties for fullerenes in organic solvents. Their binding abilities for both C60 and C70 are extremely high in toluene solution. Higher binding selectivity toward C70 is observed by all the double-calix[5]arenes. The selectivity of 5a toward C70/C60 is highest in toluene with a value of 10. The structures of the supramolecular complexes of the calix[5]arene hosts and C60 or C70 were investigated by using 1H and 13C NMR studies. The molecular mechanics calculation and X-ray structure reveal that the interior of the calix[5]arene is complementary to the exterior of C60 molecule. In contrast, the host-guest complexes of C70 with the simple calix[5]arenes take many conformational options due to its less symmetric shape. The molecular mechanics calculation and our chemical shift simulation nicely worked to estimate the reliable structures; the calix[5]arene cavity takes up C70 molecule, and the C70 molecule tilts significantly from the C5 axis of the calix[5]arene. In the case of the host-guest complex of C70 with the double-calix[5]arene, the molecular dynamics simulation of the host-guest complex represented the realistic movement of the bound C70 inside the cavity. The combination of the molecular dynamics simulation and the chemical shift simulation of the host-guest complex suggested that the C70 molecule rapidly moves inside the cavity.  相似文献   

19.
The effect of substituents with different donor capabilities, which are inserted into a molecule of fullerene C60, on the kinetics and thermodynamics of redox conversions of fullerenes that are immobilized on an electrode, is studied for the first time. To this end, redox conversions that occur with rubbed-on films of fullerene and fulleropyrrolidines are studied using cyclic voltammetry in 0.5 M KCl/H2O and a 0.1 M (C4H9)4NBF4/AN solution in acetonitrile. A hypothesis that the kinetics of redox conversions occurring with films of individual fullerenes is defined largely by changes in the structure of initial films in the process of their cathodic doping is used. The effect of the substituents is explained in the framework of this hypothesis by a transition from a dense crystalline structure of nonsubstituted fullerene C60 to an amorphous structure of substituted fullerenes. It is demonstrated that the formal potentials corresponding to redox conversions of fullerenes in a solid cationic lipid matrix are defined by the energy of interaction of anions, which are products of reduction of fullerenes, with cations of the matrix. As a result of this interaction, the formal potentials of the process of cathodic doping shift to less negative values. It is established that the insertion of a donor substituent and increase in its donor capability amplify the energy of interaction of the fullerene anions with the lipid cations.  相似文献   

20.
Donor-acceptor interaction changes essentially the terms of the ground state of binary complexes imparting them a multi-well, in particular, two-well form. A quantum chemical analysis of formation conditions for the amine derivatives of fullerenes depending on the type of the term has been performed by the example of binary complexes, including fullerenes C60 and C70 as acceptors of electrons and amines as donors,. It is found that the addition reaction of amines to fullerene hampered between neutral molecules can occur when the latter are ionized by light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号