首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent schemes for probing non-Abelian statistics in the quantum Hall effect are based on geometries where current-carrying quasiparticles flow along edges that encircle bulk quasiparticles, which are localized. Here we consider one such scheme, the Fabry-Perot interferometer, and analyze how its interference patterns are affected by a coupling that allows tunneling of neutral Majorana fermions between the bulk and edge. While at weak coupling this tunneling degrades the interference signal, we find that at strong coupling, the bulk quasiparticle becomes essentially absorbed by the edge and the intereference signal is fully restored. Furthermore, we find that the strength of the coupling can be tuned by the source-drain voltage.  相似文献   

2.
3.
Superconducting excitations—Bogoliubov quasiparticles—are the quantum mechanical mixture of negatively charged electron (−e) and positively charged hole (+e). Depending on the applied voltage bias in scanning tunneling microscope (STM) one can sample the particle and hole content of such a superconducting excitation. Recent STM experiments offer a unique insight into the inner workings of the superconducting state of superconductors. We propose a new observable quantity for STM studies that is the manifestation of the particle-hole dualism of the quasiparticles. We call it a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We propose that this quantity can be measured locally by comparing the ratio of tunneling currents at positive and negative biases locally. This Bogoliubov angle allows one to measure directly the energy and position dependent particle-hole admixture and therefore visualize robustness of superconducting state locally. It may also allow one to measure the particle-hole admixture of excitations in normal state above critical temperature and thus may be used to measure superconducting correlations in pseudogap state.  相似文献   

4.
《Nuclear Physics B》1999,559(3):637-672
We derive, from first principles, the complete Luttinger liquid theory of abelian quantum Hall edge states. This theory includes disorder and Coulomb interactions as well as the coupling to external electromagnetic fields. We introduce a theory of spatially separated edge modes, find an enlarged dual symmetry and obtain a complete classification of quasiparticle operators and tunneling exponents. The chiral anomaly on the edge is used to obtain unambiguously the Hall conductance. In resolving the problem of counter-flowing edge modes, we find that the long range Coulomb interactions play a fundamental role. In order to set up a theory for arbitrary ν we use the idea of a two-dimensional network of percolating edge modes. We derive an effective, single mode Luttinger liquid theory for tunneling processes into the edge which yields a continuous tunneling exponent 1/ν. The network approach is also used to re-derive the instanton vacuum theory for plateau transitions.  相似文献   

5.
We use quasiparticle tunneling across La2-xCexCuO4 grain boundary junctions to probe the superconducting state and its disappearance with increasing temperature and magnetic field. A zero bias conductance peak due to zero energy surface Andreev bound states is a clear signature of the phase coherence of the superconducting state. Hence, such a peak must disappear at or below the upper critical field Bc2(T). For La2-xCexCuO4 this approach sets a lower bound for Bc2(0) approximately 25 T which is substantially higher than reported previously. The method of probing the superconducting state via Andreev bound states should also be applicable to other cuprate superconductors.  相似文献   

6.
We study a tunneling geometry defined by a single point-contact constriction that brings to close vicinity two points sitting at the same edge of a quantum Hall liquid, shortening the trip between the otherwise spatially separated points along the normal chiral edge path. This wormhole-like geometry allows for entrapping bulk quasiparticles between the edge path and the tunnel junction, possibly realizing a topologically protected qubit if the quasiparticles have non-Abelian statistics. We show how either noise or simpler voltage measurements along the edge can probe the non-Abelian nature of the trapped quasiparticles.  相似文献   

7.
8.
We review the construction of a low-energy effective field theory and its state space for “abelian” quantum Hall fluids. The scaling limit of the incompressible fluid is described by a Chern–Simons theory in 2+1 dimensions on a manifold with boundary. In such a field theory, gauge invariance implies the presence of anomalous chiral modes localized on the edge of the sample. We assume a simple boundary structure, i.e., the absence of a reconstructed edge. For the bulk, we consider a multiply connected planar geometry. We study tunneling processes between two boundary components of the fluid and calculate the tunneling current to lowest order in perturbation theory as a function of dc bias voltage. Particular attention is paid to the special cases when the edge modes propagate at the same speed, and when they exhibit two significantly distinct propagation speeds. We distinguish between two “geometries” of interference contours corresponding to the (electronic) Fabry–Perot and Mach–Zehnder interferometers, respectively. We find that the interference term in the current is absent when exactly one hole in the fluid corresponding to one of the two edge components involved in the tunneling processes lies inside the interference contour (i.e., in the case of a Mach–Zehnder interferometer). We analyze the dependence of the tunneling current on the state of the quantum Hall fluid and on the external magnetic flux through the sample.  相似文献   

9.
In a fractional quantum Hall system with a narrow constriction, tunneling of quasiparticles between states at different edges can lead to resistance and to shot noise. The ratio of the shot noise to the backscattered current, in the weak scattering regime, measures the fractional charge of the quasiparticle, which has been confirmed in several experiments. However, the predicted nonlinearity of the resistance was apparently not observed in some of these cases. As a possible explanation, we consider a model where coupling between the current carrying edge mode and additional phononlike edge modes can lead to nonuniversal exponents in the current-voltage characteristic.  相似文献   

10.
11.
Ying-Hai Wu 《中国物理 B》2022,31(3):37302-037302
Non-Abelian anyons can emerge as fractionalized excitations in two-dimensional systems with topological order. One important example is the Moore—Read fractional quantum Hall state. Its quasihole states are zero-energy eigenstates of a parent Hamiltonian, but its quasiparticle states are not. Both of them can be modeled on an equal footing using the bipartite composite fermion method. We study the entanglement spectrum of the cases with two or four non-Abelian anyons. The counting of levels in the entanglement spectrum can be understood using the edge theory of the Moore—Read state, which reflects the topological order of the system. It is shown that the fusion results of two non-Abelian anyons is determined by their distributions in the bipartite construction.  相似文献   

12.
We have studied the quasiparticle transport in quantum-wire /ferromagnetic-insulator/d wave superconductor Junction (q/FI/d) in the framework of the Blonder-Tinkham-Klapwijk model. We calculate the tunneling conductance in q/FI/d as a function of the bias voltage at zero temperature and finite temperature based on Bogoliubov-de Gennes equations. Different from the case in normal-metal/insulator/d wave superconductor Junctions, the zero-bias conductance peaks vanish for the single-mode case. The tunneling conductance spectra depend on the magnitude of the exchange interaction at the ferromagnetic-insulator.  相似文献   

13.
The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at a Landau-level filling fraction nu=5/2. This is particularly intriguing because this state has unusual topological properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine the nature of the nu=5/2 state, one must measure the quasiparticle braiding statistics. Here, we propose an experiment which can simultaneously determine the braiding statistics of quasiparticle excitations and, if they prove to be non-Abelian, produce a topologically protected qubit on which a logical Not operation is performed by quasiparticle braiding. Using the measured excitation gap at nu=5/2, we estimate the error rate to be 10(-30) or lower.  相似文献   

14.
We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1 and a strongly suppressed conductance for ν<1. A transition between the two behaviors is found near ν≈1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0 Landau levels. The ZBA for ν>1 arises from weak tunneling of quasiparticles between the n=1 edge channels.  相似文献   

15.
We solve exactly the “boundary sine-Gordon” system of a massless scalar field with a potential at a boundary. This model has appeared in several contexts, including tunneling between quantum-Hall edge states and in dissipative quantum mechanics. For β2 < 8π, this system exhibits a boundary renormalization-group flow from Neumann to Dirichlet boundary conditions. By taking the massless limit of the sine-Gordon model with boundary potential, we find the exact S-matrix for particles scattering off the boundary. Using the thermodynamic Bethe ansatz, we calculate the boundary entropy along the entire flow. We show how these particles correspond to wave packets in the classical Klein-Gordon equation, thus giving a more precise explanation of scattering in a massless theory.  相似文献   

16.
《Nuclear Physics B》1997,498(3):513-538
We propose field theories for the bulk and edge of a quantum Hall state in the universality class of the Haldane-Rezayi wavefunction. The bulk theory is associated with the c = −2 conformal field theory. The topological properties of the state, such as the quasiparticle braiding statistics and ground state degeneracy on a torus, may be deduced from this conformal field theory. The 10-fold degeneracy on a torus is explained by the existence of a logarithmic operator in the c = −2 theory; this operator corresponds to a novel bulk excitation in the quantum Hall state. We argue that the edge theory is the c = 1 chiral Dirac fermion, which is related in a simple way to the c = −2 theory of the bulk. This theory is reformulated as a truncated version of a doublet of Dirac fermions in which the SU(2) symmetry - which corresponds to the spin-rotational symmetry of the quantum Hall system - is manifest and non-local. We make predictions for the current-voltage characteristics for transport through point contacts.  相似文献   

17.
18.
We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor (RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an energy gap and does not cross at zero energy in the nontopological phase. These complex properties can be detected by tunneling conductance between normal metal-RSC junctions.  相似文献   

19.
We show that a large transport current can flow through superconducting nets composed of nano-clusters. Although thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them. The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the dissipation negligibly small. We estimate the temperature T 0 of the transition from the thermal activation to quantum tunneling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号