首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles of a Prussian blue (PB) analogue, copper hexacyanoferrate, were synthesized by using ultrasonic radiation and characterized by spectroscopic and electrochemical techniques. The nanoparticles (ca. 10 nm diameter) were immobilized onto transparent indium tin oxide electrodes by electrostatic layer-by-layer deposition. These modified electrodes showed interesting electrochromic properties, changing the coloration during the redox process from brown to orange when oxidized. The nanostructured electrode presented high stability, in contrast to that observed for PB nanoparticles; this fact must be related to the maintenance of the electrostatic assembly because the oxidized compound, CuII/FeIII(CN)6, still possesses a negative excess of charge due to the high number of cyanide groups that link the nanoparticles with the polycation, assuring the integrity of the whole electrostatic assembled film.  相似文献   

2.
We report electrostatic stabilization of micrometer-sized TiO(2) particles at long range (several micrometers) in liquid and supercritical CO(2) despite the ultralow dielectric constant, as low as 1.5. The counterions were solubilized in dry reverse micelles, formed with a low-molecular weight cationic perfluoropolyether trimethylammonium acetate surfactant, to prevent ion pairing with the particle surface. Dynamic light scattering and settling velocities indicate a particle diameter of 620-740 nm. The electrophoretic mobility of -2.3 x 10(-8) m(2)/V s indicated a particle charge on the order of -1.7 x 10(-17) C, or 105 elementary negative charges per particle. The balance of particle compression by an electric field versus electrostatic repulsion generated an amorphous arrangement of particles with 5-9 mum spacing, indicating Debye lengths greater than 1 mum. Scattering patterns also indicate that chains of particles may be achieved in CO(2) by dielectrophoresis with alternating fields. The electrostatic stabilization has been achieved by solubilizing a small concentration of counterions in only a small fraction of the reverse micelles in the double layer. Whereas many low-molecular weight surfactants have been shown to form reverse micelles in CO(2), very few polymers are able to stabilize micrometer-sized colloids sterically. Thus, electrostatic stabilization has the potential to expand markedly the domain of colloid science in apolar supercritical fluids.  相似文献   

3.
The mechanism of molecule-based electrostatic gating of redox fluxes at conical glass nanopore (GNP) electrodes has been investigated using finite-element simulations. The results demonstrate that the fluxes of cationic redox molecules through the nanopore orifice can be reduced to negligibly small values when the surface charge of the nanopore is switched from a negative to a positive value. Electrostatic charge reversal can be affected by ionization of surface-bound moieties in response to environmental stimuli (e.g., photoionization or acid protonation), but only if the negative charge of the glass is included in the analysis. Numerical simulations of the responses of GNP electrodes are based on a simultaneous solution of the Poisson and Nernst-Planck equations and are in excellent agreement with our previously reported experimental results for electrostatic gating of the fluxes of Ru(NH 3) 6 (3+) and Fe(bpy) 3 (2+) at GNP electrodes with orifice radii between 15 and 100 nm. The gating mechanism is discussed in terms of three components: (1) migration of ionic redox species in the depletion layer adjacent to the electrode surface; (2) migrational transport along the charged pore walls; (3) electrostatic rejection of charged molecules at the pore orifice. The numerical results indicate that all three components are operative, but that ion migration along the pore walls is dominant.  相似文献   

4.
We report the fabrication and extensive characterization of solid polymer electrolyte-gated organic field-effect transistors (PEG-FETs) in which a polyethylene oxide (PEO) film containing a dissolved Li salt is used to modulate the hole conductivity of a polymer semiconductor. The large capacitance (approximately 10 microF/cm2) of the solution-processed polymer electrolyte gate dielectric facilitates polymer semiconductor conductivities on the order of 103 S/cm at low gate voltages (<3 V). In PEG-FETs based on regioregular poly(3-hexylthiophene), gate-induced hole densities were 2 x 10(14) charges/cm2 with mobilities >3 cm2/V.s. PEG-FETs fabricated with gate electrodes either aligned or intentionally nonaligned to the channel exhibited dramatically different electrical behavior when tested in vacuum or in air. Large differences in ionic diffusivity can explain the dominance of either electrostatic charging (in vacuum) or bulk electrochemical doping (in air) as the device operational mechanism. The use of a larger anion in the polymer electrolyte, bis(trifluoromethanesulfonyl)imide (TFSI-), yielded transistors that showed clear current saturation and square law behavior in the output characteristics, which also points to electrostatic (field-effect) charging. In addition, negative transconductances were observed using the PEO/LiTFSI electrolyte for all three polymer semiconductors at gate voltages larger than -3 V. Bias stress measurements performed with PEO/LiTFSI-gated bottom contact PEG-FETs showed that polymer semiconductors can sustain high ON currents for greater than 10 min without large losses in conductance. Collectively, the results indicate that PEG-FETs may serve as useful devices for high-current/low-voltage applications and as testbeds for probing electrical transport in polymer semiconductors at high charge density.  相似文献   

5.
以商品活性炭(AC)为正极, 预锂化中间相碳微球(LMCMBs)为负极, 组装成锂离子电容器(LICs). 用X射线衍射(XRD)对LMCMB 电极材料的晶体结构进行了表征和分析, 预锂化量(PIC)小于200 mAh·g-1 时,LMCMB电极材料基本保持了原始的石墨晶体结构. 利用三电极装置, 测试了充放电过程中LICs 的正、负极及整电容器的电压变化曲线. 以LMCMB为电极, 锂离子电容器负极的工作电压变低, 并且电压曲线更加平坦, 同时正极也可以利用到更低的电压区间. 对比锂离子电容器MCMB/AC, LMCMB/AC在比能量密度、循环性能和库仑效率电化学性能方面都得到了改善. 在电压区间2.0-3.8 V 下, 100 次循环后, 放电比容量的保持率从74.8%增加到100%, 库仑效率从95%增加到100%. LMCMB/AC电容器容量不衰退的直接原因是由于AC正极极化变小. 在2.0-3.8 V和1.5-3.8 V电压区间内, LMCMB/AC锂离子电容器的比能量密度分别可达85.6和97.9 Wh·kg-1.  相似文献   

6.
The electronic properties of electropolymerized films of the 3,4-ethylenedioxy-substituted conducting polymers (CP) poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3,4-ethylenedioxypyrrole) (PEDOP) and poly(3,4-ethylenedioxyselenophene) (PEDOS) have been investigated, along with their electrocatalytic activity toward 2,5-dimercapto-1,3,4-thiadiazole (DMcT). For the electropolymerized films, the conductivity onset potential was most negative for PEDOP (-1.50 V), followed by PEDOS (-1.35 V) and with PEDOT possessing the most positive onset (-1.15 V). The heterogeneous charge transfer rate constant for DMcT in solution at polymer-film-modified glassy carbon electrodes (GCEs) was studied. It was found that compared to PEDOP, both PEDOS and PEDOT performed better as electrocatalysts, with PEDOS having a heterogeneous charge transfer rate constant of 1.8 × 10(-3) cm/s. The film morphology of the electropolymerized films was investigated via SEM, and some film characteristics could be correlated with electrocatalytic activity. The potential use of CP/DMcT composites for lithium ion batteries (LIBs) is discussed.  相似文献   

7.
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAH) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAH and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.  相似文献   

8.
《Electroanalysis》2017,29(2):324-329
An indium tin oxide (ITO) electrode prepared on a flexible polymeric support was modified with an amino‐silane and then functionalized with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized ammonium group produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH>9 (note that 4‐carboxyphenylboronic acid was attached to the electrode surface in excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH). Single‐stranded DNA molecules were loaded on the modified electrode at pH 7.0 due to their electrostatic attraction to the positively charged surface. By applying electrolysis at −1.0 V (vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase in the vicinity of the electrode surface. The process resulted in the transition to the total negative charge due to the negative charges formed on the phenylboronic acid species. This resulted in the electrostatic repulsion and release of the loaded DNA. The developed approach allowed the electrochemically‐triggered DNA release not only in the aqueous solutions, but also in human serum solution, thus giving promise for future biomedical applications.  相似文献   

9.
制备了两组Nafion膜电极(膜中分别分布有带正、负电荷的过渡金属大环配离子),并用循环伏安法研究比较了这两组电极对氧催化还原性能,探讨了配离子和Nafion膜之间的静电作用对电极催化性能影响的规律,同时对其它因素的影响及电荷在Nafion膜中传递的机理也进行了讨论。  相似文献   

10.
The electrochemical properties of two-dimensional assemblies of 500 nm type Ib diamond particles are investigated as a function of their surface oxidation state. High Pressure High Temperature particles are sequentially exposed to a hot strong acid bath and to H(2) plasma in order to generate oxygen (ODP) and hydrogen surface terminations (HDP). Changes in the surface composition following the chemical treatments are confirmed by FTIR. Electrophoretic mobility measurements show that the diamond particles exhibit a negative surface charge at pH above 7 independently of the surface termination. Oxidation in the acid bath and subsequent reduction in the H(2) plasma only affects about 30% of the particle surface charge. The intrinsic negative charge allows the formation of 2D assemblies by electrostatic adsorption on poly(diallyldimethylammonium chloride) (PDADMAC) modified In-doped SnO(2) electrodes (ITO). The particle number density in the assembly was controlled by the adsorption time up to a maximum coverage of ca. 40%. Cyclic voltammetry in the absence of redox species in solution show that the acid treatment effectively removes responses associated with sp(2) carbon impurities, resulting in a potential independent capacitive signal. On the other hand, HDP assemblies are characterized by a charging process at a potential above 0.1 V vs Ag/AgCl. These responses are associated with hole-injection into the valence band edge which is shifted to approximately -4.75 eV vs vacuum upon hydrogenation. Information concerning the position of the valence band edge as well as hole number density at the HDP surface as a function of the applied potential are extracted from the electrochemical analysis.  相似文献   

11.
《Electroanalysis》2017,29(2):398-408
An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA‐based Identity, AND and XOR logic gates. Single‐stranded DNA molecules were loaded on the mixed poly(N ,N ‐dimethylaminoethyl methacrylate) (PDMAEMA)/poly(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAEMA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at −1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.  相似文献   

12.
《Electroanalysis》2017,29(6):1543-1553
A graphene‐functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4‐carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye‐labeled insulin (insulin‐FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin‐FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC‐labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene‐functionalized carbon fiber electrode demonstrated significant advantages in the signal‐stimulated insulin release comparing with the carbon fiber electrode without the graphene species.  相似文献   

13.
Novel tetracationic diviologen compounds of the general formula CH3(CH2)nV2+(CH2)6V2+(CH2)nCH3 (where V2+ = 4,4'-bipyridinium and n = 5 or 11) were investigated as electrochemical reporters of DNA duplex formation. These compounds bind to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) when the DNA is either present in solution or immobilized at electrode surfaces. Binding to thiolated ssDNA and dsDNA immobilized at Au electrodes was characterized using the electrochemical response for the reduction of the V2+ state to the V+ (viologen radical cation) state. An analysis of the charge for this reduction provided isotherms and binding constants for binding of these diviologens to both forms of immobilized DNA. Saturation of the binding is achieved at solution concentrations near 20 microM. For both the n = 5 and 11 diviologens, binding to ssDNA is driven by electrostatic charge neutralization. For the n = 11 case, the binding is cooperative. In the presence of dsDNA, the n = 11 diviologen exhibits a unique reduction potential for the V2+/+ redox couple that is shifted approximately 100 mV negative of that in the presence of ssDNA. This new electrochemical signature is attributed to the reduction of viologen groups bound in the minor groove of the DNA duplex. For dsDNA in solution, an increase in the thermal denaturation temperature (Tm) from 60 to 66 degrees C as a function of the n = 11 diviologen concentration confirmed its interaction with the duplex. Circular dichroism (CD) spectroscopy also was used to investigate the binding of both the V2+ and V+ redox states of the n = 11 diviologen to dsDNA in solution. For the V+ state, a CD signal was observed that is consistent with the presence of face-to-face pi dimers of the viologen groups. This unambiguously demonstrates the binding of this redox state of the diviologen in the dsDNA minor groove and the formation of such dimers in the minor groove.  相似文献   

14.
Langmuir-Blodgett and Langmuir-Schaeffer methods were employed to deposit a mixed bilayer consisting of 90% of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 10% of gramicidin (GD), a short 15 residue ion channel forming peptide, onto a Au(111) electrode surface. This architecture allowed us to investigate the effect of the electrostatic potential applied to the electrode on the orientation and conformation of DMPC molecules in the bilayer containing the ion channel. The charge density data were determined from chronocoulometry experiments. The electric field and the potential across the membrane were determined through the use of charge density curves. The magnitudes of potentials across the gold-supported biomimetic membrane were comparable to the transmembrane potential acting on a natural membrane. The information regarding the orientation and conformation of DMPC and GD molecules in the bilayer was obtained from photon polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) measurements. The results show that the bilayer is adsorbed, in direct contact with the metal surface, when the potential across the interface is more positive than -0.4 V and is lifted from the gold surface when the potential across the interface is more negative than -0.4 V. This change in the state of the bilayer has a significant impact on the orientation and conformation of the phospholipid and gramicidin molecules. The potential induced changes in the membrane containing peptide were compared to the changes in the structure of the pure DMPC bilayer determined in earlier studies.  相似文献   

15.
A hydrogen-bond forming tris(amide) receptor based on cyclotriveratrylene (CTV) was prepared. Self-assembled monolayers (SAMs) of the receptor were formed on gold surfaces. Desorption experiments show a surface coverage of 2.26 x 10(-10) mol/cm(2). (1)H NMR and UV measurements confirm that the receptor exhibits the highest affinity for acetate ions among the anions studied. Electrochemical impedance was used to investigate anion sensing by the SAMs and proved to be an efficient and convenient technique for detecting anions in aqueous solutions. Upon binding acetate anions, the monolayer-modified gold electrodes show a drastic increase of the R(ct) values when Fe(CN)(6)(3-/4-) is used as the redox probe. When the probe was changed to a positively charged one, Ru(NH3)(6)(3+/2+), the R(ct) values decreased monotonically as the acetate concentration was increased, thus confirming the accumulation of negative surface charge upon anion binding. H(2)PO(4-) shows some interference when sensing AcO-. Other monovalent anions such as Cl-, Br-, NO3(-) and HSO4(-) do not bind to the CTV receptor either in solution or on the surfaces.  相似文献   

16.
The new design incorporates the negative ion source and the mass analyzer, both constructed from cylindrical electrodes. The ion source is formed by three gridded cylindrical electrodes: a pulsed grid, the intermediate grid and the final accelerating grid. During a first time lapse, the electrons penetrate through the pulsed grid into the retarding field between this grid and the intermediate grid. The electrons are turning at some depth inside this intergrid space, where the attachment to neutral molecules most probably occurs. Next, the pulsed grid becoming strongly negative and ions are extracted towards the final acceleration grid. The ions from the cylindrical surface where they were created concentrate on the common axis of the electrodes (lateral focusing). The source lateral and time focus are coincident. A cylindrical electrostatic mirror is fitted to the source. The design, with a single stage, ensures also lateral focusing of the ions diverging from the common axis of the electrodes. The mirror electric and geometric parameters were selected to ensure both lateral and time focusing on the final detector with subsequent high luminosity. The basic parameters of the specific negative ion source time-of-flight mass analyzer design proposed here, are ion source final acceleration, intermediate, pulsed cylindrical grid radii 10, 20 and 30 mm, respectively, electrostatic mirror earthed grid and ion turning points surface radii 0.6 and 0.8 m, respectively. Ion packet smearing by the ion energy spread (resulting from the initial electron energy spread as electrons are turning at different depths inside the ionization region, from the moment when ions were created, being accelerated towards the pulsed grid during ionization) and by the turnaround time inside the cylindrical field was accounted for. Maintaining very high sensitivity, a resolution of the order of 100 is expected.  相似文献   

17.
We study light scattering by sodium clusters generated in a metal cell [3] and subjected to an external electrostatic field. Scattered laser light intensities at right angle to the incoming laser beam and with polarization parallel I V and perpendicular I H to that of the laser show two maxima as a function of the electrostatic field (potential of electrode): the central maximum CM for the zero field (V = 0) and the side maximum SM for ca. -60 V (field strength 2400 V/m). This behavior can be understood on the basis of the Mie scattering theory by taking into account electrostatic charging of clusters due to the laser light ionization of the medium (Na2 molecules). The presented model leads to the conclusion that the electrostatic field changes cluster size, mainly due to the influence on the supersaturation of the medium. Clusters are charged with charge proportional to the cluster radius, only at SM clusters are neutral (zero charge). For electrode potential higher than SM clusters are positively charged, for smaller potential (more negative than SM) clusters are negatively charged.  相似文献   

18.
Electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) measurements are used to examine the ability of applied potential to drive the ionic self-assembly of poly(diallyldimethylammonium) chloride (PDDA) onto a substrate modified with a monolayer of 3-mercaptopropionic acid (3-MPA). The potential of zero charge (PZC) of the gold electrode modified with a monolayer of 3-MPA was found by differential capacitance measurements to be -0.12 (+/-0.01) V versus Ag-AgCl. Changing the substrate potential to values positive (-0.01 V vs Ag-AgCl) of the PZC induces interfacial conditions that are favorable for the electrostatic deposition of cationic polymers onto the surface of 3-MPA monolayers. This result is also consistent with experimental observations obtained when the 3-MPA-modified substrate is exposed to 0.10 mol L (-1) NaOH solutions. When potentials equal or negative to the PZC are applied to the substrate, no significant accumulation of the PDDA is found by either QCM or EIS measurement. This result is consistent with results obtained when the 3-MPA modified substrate is exposed to 0.10 mol L (-1) HCl solutions where no PDDA adsorption is expected because the monolayer is neutral under these conditions. Changes in the impedance and quartz crystal frequency obtained after potential is applied to the substrate are interpreted in terms of the applied potential creating interfacial conditions that are favorable for the deprotonation of the terminal carboxylic acid groups and the subsequent electrostatic assembly of the polycation onto the negatively charged monolayer.  相似文献   

19.
The two negative charges on a phosphate monoester RO-PO32- at neutral pH provide a considerable electrostatic barrier toward reactions with nucleophilic reagents with a negative charge on the attacking atom. Electrostatic repulsion disappears when the hydrolysis of an aryl phosphate monoester is catalyzed by a neighboring cationic general acid. The hydrolysis of 8-dimethylammonium-1-phosphate (1) is catalyzed by oxyanions, fluoride anion, and hydroxylamines at similar rates.  相似文献   

20.
Clusters of C60-aniline dyads are deposited as thin films on nanostructured SnO2 electrodes under the influence of an electric field. At low applied DC voltage (<5 V) the clusters in toluene/acetonitrile (1:3) mixed solvent grow in size (from 160 nm to approximately 200 nm in diameter) while at higher voltages (>50 V) they are deposited on the electrode surface as thin films. The C60- aniline dyad cluster films when cast on nanostructured SnO2 films are photoelectrochemically active and generate photocurrent under visible light excitation. These nanostructured fullerene films are capable of delivering relatively large photocurrents (up to approximately 0.2 mA cm(-2), photoconversion efficiency of 3-4%) when employed as photoanodes in photoelectrochemical cells. Both luminescence and transient absorption studies confirm the formation of charge transfer product (C60 anion) following UV/Vis excitation of these films. Photo-induced charge separation in these dyad clusters is followed by the electron injection from C60-anion moiety into the SnO2 nanocrystallites. The oxidized counterpart is reduced by the redox couple present in the electrolyte, thus regenerating the dyad clusters. The feasibility of casting high surface area thin fullerene films on electrode surfaces has opened up new avenues to utilize dyad molecules of sensitizer bridge donor type in light energy conversion devices, such as solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号