首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
本文主要讨论扰动色谱方程delta激波解的行成和转换,并讨论上述方程的黎曼问题.当扰动参数趋于零时,通过研究黎曼解的极限,我们可以观察到如下两个重要现象:激波和接触间断重合行成delta激波,一类激波(一个变量含有delta函数).  相似文献   

2.
In this paper, we study the perturbed Riemann problem for a class of nonstrictly hyperbolic system of conservation laws, and focuse on the interactions of delta shock waves with the shock waves and the rarefaction waves. The global solutions are constructed completely with the method of splitting delta function. In solutions, we find a new kind of nonclassical wave, which is called delta contact discontinuity with Dirac delta function in both components. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. Moreover, by letting perturbed parameter $\varepsilon$ tend to zero, we analyze the stability of Riemann solutions.  相似文献   

3.
We study a class of non-strictly and weakly hyperbolic systems of conservation laws which contain the equations of geometrical optics as a prototype. The Riemann problems are constructively solved. The Riemann solutions include two kinds of interesting structures. One involves a cavitation where both state variables tend to zero forming a singularity, the other is a delta shock wave in which both state variables contain Dirac delta function simultaneously. The generalized Rankine–Hugoniot relation and entropy condition are proposed to solve the delta shock wave. Moreover, with the limiting viscosity approach, we show all of the existence, uniqueness and stability of solution involving the delta shock wave. The generalized Rankine–Hugoniot relation is also confirmed. Then our theory is successfully applied to two typical systems including the geometric optics equations. Finally, we present the numerical results coinciding with the theoretical analysis.  相似文献   

4.
The continuous sensitivity equation method allows to quantify how changes in the input of a partial differential equation (PDE) model affect the outputs, by solving additional PDEs obtained by differentiating the model. However, this method cannot be used directly in the framework of hyperbolic PDE systems with discontinuous solution, because it yields Dirac delta functions in the sensitivity solution at the location of state discontinuities. This difficulty is well known from theoretical viewpoint, but only a few works can be found in the literature regarding the possible numerical treatment. Therefore, we investigate in this study how classical numerical schemes for compressible Euler equations can be modified to account for shocks when computing the sensitivity solution. In particular, we propose the introduction of a source term, that allows to remove the spikes associated to the Dirac delta functions in the numerical solution. Numerical studies exhibit a strong impact of the numerical diffusion on the accuracy of this strategy. Therefore, we propose an anti-diffusive numerical scheme coupled with the approximate Riemann solver of Roe for the state problem. For the sensitivity problem, two different numerical schemes are implemented and compared: one which takes into account the contact wave and another that neglects it. The effects of the numerical diffusion on the convergence of the schemes with respect to the grid are discussed. Finally, an application to uncertainty propagation is investigated and the different numerical schemes are compared.  相似文献   

5.
Recently, Galapon [E.A. Galapon, Delta-convergent sequences that vanish at the support of the limit Dirac delta function, J. Phys. A 42 (2009) 175–201] has posed the question of the existence of delta-convergent sequences that vanish at the support of the limit Dirac delta function and gave an example of sequences of this type. It is a sequence of even functions that do not have a compact support. Motivated by the question, in this short note we develop some results concerning delta sequences and show more examples of delta sequences of the type with or without compact support and that are even or not even.  相似文献   

6.
This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic spin and helicity of electrons. Special attention is given to Dirac’s original visionary work on the existence of the magnetic monopole, and on his Large Number Hypothesis that led to the conclusion that physical quantities universally considered as constant of nature are not really constants, but they vary with cosmological time. Some concluding remarks with personal reminiscence are added in the end of the paper.  相似文献   

7.
We obtain exact solutions of the Dirac equation in 2+1 dimensions and the electron energy spectrum in the superposition of the Aharonov-Bohm and Coulomb potentials, which are used to study the Aharonov-Bohm effect for states with continuous and discrete energy spectra. We represent the total scattering amplitude as the sum of amplitudes of scattering by the Aharonov-Bohm and Coulomb potentials. We show that the gauge-invariant phase of the wave function or the energy of the electron bound state can be observed. We obtain a formula for the scattering cross section of spin-polarized electrons scattered by the Aharonov-Bohm potential. We discuss the problem of the appearance of a bound state if the interaction between the electron spin and the magnetic field is taken into account in the form of the two-dimensional Dirac delta function. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 149, No. 3, pp. 502–517, December, 2006. An erratum to this article is available at .  相似文献   

8.
We prove that the Riemann solutions are stable for a nonstrictly hyperbolic system of conservation laws under local small perturbations of the Riemann initial data. The proof is based on the detailed analysis of the interactions of delta shock waves with shock waves and rarefaction waves. During the interaction process of the delta shock wave with the rarefaction wave, a new kind of nonclassical wave, namely a delta contact discontinuity, is discovered here, which is a Dirac delta function supported on a contact discontinuity and has already appeared in the interaction process for the magnetohydrodynamics equations [M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl. 344 (2008) 1143-1157]. Moreover, the global structures and large time asymptotic behaviors of the solutions are constructed and analyzed case by case.  相似文献   

9.
In this paper, we solve the Riemann problem with the initial data containing Dirac delta functions for a class of coupled hyperbolic systems of conservation laws. Under suitably generalized Rankine–Hugoniot relation and entropy condition, the existence and uniqueness of solutions involving delta shock waves are proved. Further, four kinds of different structure for solutions are established uniquely.  相似文献   

10.
This paper is concerned with the numerical solution of boundary integral equations on smooth curves of the plane with some numerical methods having in common the use of sets of equally spaced periodic Dirac delta distributions as trial functions. In a functional frame of classical periodic pseudodifferential equations of nonpositive order, delta-spline and delta–delta methods are introduced and analysed with the overall aim of obtaining asymptotic expansions of the error in weak and strong norms. As a byproduct we obtain the convergence of the coefficients associated to the discrete delta approximation to pointwise values of the unknown, as well as superconvergent choices of positions of the delta distributions in relation with the discretization grid. Two numerical examples are explored to show nodal errors and the applicability of Richardson extrapolation.  相似文献   

11.
This paper presents analytical test cases for tracer advection–diffusion-decay problems. The test cases are used to validate a finite element, unstructured grid fecal bacteria transport model. The test cases include the following domains: one-dimensional infinitely long river, two-dimensional half plane and two-dimensional infinitely long channel. In this work the bacteria are considered to enter the domain only through point sources. Analytical solutions are derived using either a Dirac delta function or a variable-width Gaussian function as a point source. Both analytical derivations and numerical simulations suggest that the error is maximised at the source. We present formulae for estimating the error caused by replacing a Dirac source with a Gaussian function in the numerical model. Furthermore, numerical simulations suggest that the best approximation for a Dirac source is a Gaussian whose width parameter is one third of the local mesh size.  相似文献   

12.
The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property ${\int_\mathbb{R}f(x)\delta(x)\,dx=f(0)}$ of the Dirac delta function. We show that the Dirac Delta Theorem is equivalent to weak K?nig’s Lemma (see Yu and Simpson in Arch Math Log 30(3):171–180, 1990) in classical Reverse Mathematics. This further validates the status of WWKL0 as one of the ‘Big’ systems of Reverse Mathematics. In the context of ERNA’s Reverse Mathematics (Sanders in J Symb Log 76(2):637–664, 2011), we show that the Dirac Delta Theorem is equivalent to the Universal Transfer Principle. Since the Universal Transfer Principle corresponds to WKL, it seems that, in ERNA’s Reverse Mathematics, the principles corresponding to WKL and WWKL coincide. Hence, ERNA’s Reverse Mathematics is actually coarser than classical Reverse Mathematics, although the base theory has lower first-order strength.  相似文献   

13.
In this paper we study sequences of matrix polynomials that satisfy a non-symmetric recurrence relation. To study this kind of sequences we use a vector interpretation of the matrix orthogonality. In the context of these sequences of matrix polynomials we introduce the concept of the generalized matrix Nevai class and we give the ratio asymptotics between two consecutive polynomials belonging to this class. We study the generalized matrix Chebyshev polynomials and we deduce its explicit expression as well as we show some illustrative examples. The concept of a Dirac delta functional is introduced. We show how the vector model that includes a Dirac delta functional is a representation of a discrete Sobolev inner product. It also allows to reinterpret such perturbations in the usual matrix Nevai class. Finally, the relative asymptotics between a polynomial in the generalized matrix Nevai class and a polynomial that is orthogonal to a modification of the corresponding matrix measure by the addition of a Dirac delta functional is deduced.  相似文献   

14.
We consider a simply supported beam with restoring and external forces given as a sum of a continuous function and a Dirac delta distribution. We present sufficient conditions on these data in order to guarantee a unique positive or negative solution, respectively.  相似文献   

15.
In this paper, we study the Riemann problem with the initial data containing the Dirac delta function for the isentropic relativistic Chaplygin Euler equations. Under suitably generalized Rankine–Hugoniot relation and entropy condition, we constructively obtain the global existence of generalized solutions including delta shock waves that explicitly exhibit four kinds of different structures. Moreover, it can be found that the solutions constructed here are stable for the perturbation of the initial data.  相似文献   

16.
This paper is an investigation of the class of real classical Markov processes without a birth process that will generate the Dirac equation in 1+1 dimensions. The Markov process is assumed to evolve in an extra (ordinal) time dimension. The derivation requires that occupation by the Dirac particle of a space-time lattice site is encoded in a 4 state classical probability vector. Disregarding the state occupancy, the resulting Markov process is an homogeneous and almost isotropic binary random walk in Dirac space and Dirac time (including Dirac time reversals). It then emerges that the Dirac wavefunction can be identified with a polarization induced by the walk on the Dirac space-time lattice. The model predicts that QM observation must happen in ordinal time and that wavefunction collapse is due not to a dynamical discontinuity, but to selection of a particular ordinal time. Consequently, the model is more relativistically equitable in its treatment of space and time in that the observer is attributed no special ability to specify the Dirac time of observation.  相似文献   

17.
In this contribution, we analyze the regularity conditions of a perturbation on a quasi-definite linear functional by the addition of Dirac delta functionals supported on N points of the unit circle or on its complement. We also deal with a new example of linear spectral transformation. We introduce a perturbation of a quasi-definite linear functional by the addition of the first derivative of the Dirac linear functional when its support is a point on the unit circle or two points symmetric with respect to the unit circle. Necessary and sufficient conditions for the quasi-definiteness of the new linear functional are obtained. Outer relative asymptotics for the new sequence of monic orthogonal polynomials in terms of the original ones are obtained. Finally, we prove that this linear spectral transform can be decomposed as an iteration of Christoffel and Geronimus linear transformations.  相似文献   

18.
We consider tomograms and quasidistributions, such as the Wigner functions, the Glauber–Sudarshan P-functions, and the Husimi Q-functions, that violate the standard normalization condition for probability distribution functions. We introduce special conditions for theWigner function to determine the tomogram with the Radon transform and study three different examples of states like the de Broglie plane wave, the Moshinsky shutter problem, and the stationary state of a charged particle in a uniform constant electric field. We show that their tomograms and quasidistribution functions expressed in terms of the Dirac delta function, the Airy function, and Fresnel integrals violate the standard normalization condition and the density matrix of the state therefore cannot always be reconstructed. We propose a method that allows circumventing this problem using a special tomogram in the limit form.  相似文献   

19.
We analyze the existence and singularity of a solution to a reaction–diffusion equation, whose reaction term is represented by a Dirac delta function which depends on the solution itself. We prove that there exists a unique analytic solution with a logarithmic singularity at the origin.  相似文献   

20.
In this paper, we study the Riemann problem with the initial data containing the Dirac delta function for the relativistic Chaplygin Euler equations. Under the generalized Rankine-Hugoniot conditions and entropy condition, we constructively obtain the global existence of generalized solutions including delta shock waves that explicitly exhibit four kinds of different structures. Moreover, we obtain the stability of generalized solutions by making use of the perturbation of the initial data  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号