首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
A Helmholtz equation in two dimensions discretized by a second order finite difference scheme is considered. Krylov methods such as Bi-CGSTAB and IDR(s) have been chosen as solvers. Since the convergence of the Krylov solvers deteriorates with increasing wave number, a shifted Laplace multigrid preconditioner is used to improve the convergence. The implementation of the preconditioned solver on CPU (Central Processing Unit) is compared to an implementation on GPU (Graphics Processing Units or graphics card) using CUDA (Compute Unified Device Architecture). The results show that preconditioned Bi-CGSTAB on GPU as well as preconditioned IDR(s) on GPU is about 30 times faster than on CPU for the same stopping criterion.  相似文献   

2.
In 1983, a preconditioner was proposed [J. Comput. Phys. 49 (1983) 443] based on the Laplace operator for solving the discrete Helmholtz equation efficiently with CGNR. The preconditioner is especially effective for low wavenumber cases where the linear system is slightly indefinite. Laird [Preconditioned iterative solution of the 2D Helmholtz equation, First Year's Report, St. Hugh's College, Oxford, 2001] proposed a preconditioner where an extra term is added to the Laplace operator. This term is similar to the zeroth order term in the Helmholtz equation but with reversed sign. In this paper, both approaches are further generalized to a new class of preconditioners, the so-called “shifted Laplace” preconditioners of the form Δφ−k2φ with . Numerical experiments for various wavenumbers indicate the effectiveness of the preconditioner. The preconditioner is evaluated in combination with GMRES, Bi-CGSTAB, and CGNR.  相似文献   

3.
The scattered data interpolation problem in two space dimensions is formulated as a partial differential equation with interpolating side conditions. The system is discretized by the Morley finite element space. The focus of this paper is to study preconditioned iterative methods for the corresponding discrete systems. We introduce block diagonal preconditioners, where a multigrid operator is used for the differential equation part of the system, while we propose an operator constructed from thin plate radial basis functions for the equations corresponding to the interpolation conditions. The effect of the preconditioners are documented by numerical experiments.  相似文献   

4.
5.
A shifted Laplacian operator is obtained from the Helmholtz operator by adding a complex damping. It serves as a basic tool in the most successful multigrid approach for solving highly indefinite Helmholtz equations — a Shifted Laplacian preconditioner for Krylov-type methods. Such preconditioning significantly accelerates Krylov iterations, much more so than the multigrid based on original Helmholtz equations. In this paper, we compare approximation and relaxation properties of the Helmholtz operator with and without the complex shift, and, based on our observations, propose a new hybrid approach that combines the two. Our analytical conclusions are supported by two-dimensional numerical results.  相似文献   

6.
We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear‐quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented.  相似文献   

7.
The discretization of eigenvalue problems for partial differential operators is a major source of matrix eigenvalue problems having very large dimensions, but only some of the smallest eigenvalues together with the eigenvectors are to be determined. Preconditioned inverse iteration (a “matrix-free” method) derives from the well-known inverse iteration procedure in such a way that the associated system of linear equations is solved approximately by using a (multigrid) preconditioner. A new convergence analysis for preconditioned inverse iteration is presented. The preconditioner is assumed to satisfy some bound for the spectral radius of the error propagation matrix resulting in a simple geometric setup. In this first part the case of poorest convergence depending on the choice of the preconditioner is analyzed. In the second part the dependence on all initial vectors having a fixed Rayleigh quotient is considered. The given theory provides sharp convergence estimates for the eigenvalue approximations showing that multigrid eigenvalue/vector computations can be done with comparable efficiency as known from multigrid methods for boundary value problems.  相似文献   

8.
In this paper, an iterative solution method for a fourth‐order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in (SIAM J. Sci. Comput. 2006; 27 :1471–1492), where multigrid was employed as a preconditioner for a Krylov subspace iterative method. The multigrid preconditioner is based on the solution of a second Helmholtz operator with a complex‐valued shift. In particular, we compare preconditioners based on a point‐wise Jacobi smoother with those using an ILU(0) smoother, we compare using the prolongation operator developed by de Zeeuw in (J. Comput. Appl. Math. 1990; 33 :1–27) with interpolation operators based on algebraic multigrid principles, and we compare the performance of the Krylov subspace method Bi‐conjugate gradient stabilized with the recently introduced induced dimension reduction method, IDR(s). These three improvements are combined to yield an efficient solver for heterogeneous problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a numerical investigation for the computation of wind or marine current turbines in a farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take into account for the turbines. In order to enforce the boundary condition onto the panel elements, a linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main advantage of the presented method is the use of a specific preconditioner well suited for the desired application. The chosen implementation proved to be very efficient with only 3 iterations of our preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these cases, and can be applied to many others. At the end of the paper, some applications (specifically, wake computations) in a farm are presented, along with a quantitative assessment of the computational time savings brought by the iterative approach.  相似文献   

10.
Preconditioned Krylov subspace (KSP) methods are widely used for solving large‐scale sparse linear systems arising from numerical solutions of partial differential equations (PDEs). These linear systems are often nonsymmetric due to the nature of the PDEs, boundary or jump conditions, or discretization methods. While implementations of preconditioned KSP methods are usually readily available, it is unclear to users which methods are the best for different classes of problems. In this work, we present a comparison of some KSP methods, including GMRES, TFQMR, BiCGSTAB, and QMRCGSTAB, coupled with three classes of preconditioners, namely, Gauss–Seidel, incomplete LU factorization (including ILUT, ILUTP, and multilevel ILU), and algebraic multigrid (including BoomerAMG and ML). Theoretically, we compare the mathematical formulations and operation counts of these methods. Empirically, we compare the convergence and serial performance for a range of benchmark problems from numerical PDEs in two and three dimensions with up to millions of unknowns and also assess the asymptotic complexity of the methods as the number of unknowns increases. Our results show that GMRES tends to deliver better performance when coupled with an effective multigrid preconditioner, but it is less competitive with an ineffective preconditioner due to restarts. BoomerAMG with a proper choice of coarsening and interpolation techniques typically converges faster than ML, but both may fail for ill‐conditioned or saddle‐point problems, whereas multilevel ILU tends to succeed. We also show that right preconditioning is more desirable. This study helps establish some practical guidelines for choosing preconditioned KSP methods and motivates the development of more effective preconditioners.  相似文献   

11.
In this paper we describe an algebraic multilevel extension of the approximate inverse AINV preconditioner for solving symmetric positive definite linear systems Ax=b with the preconditioned conjugate gradient method. The smoother is the approximate inverse M and the coarse grids and the interpolation operator are constructed by looking at the entries of M. Numerical examples are given for problems arising from discretization of partial differential equations.  相似文献   

12.
This article is concerned with solving the high order Stein tensor equation arising in control theory. The conjugate gradient squared (CGS) method and the biconjugate gradient stabilized (BiCGSTAB) method are attractive methods for solving linear systems. Compared with the large-scale matrix equation, the equivalent tensor equation needs less storage space and computational costs. Therefore, we present the tensor formats of CGS and BiCGSTAB methods for solving high order Stein tensor equations. Moreover, a nearest Kronecker product preconditioner is given and the preconditioned tensor format methods are studied. Finally, the feasibility and effectiveness of the new methods are verified by some numerical examples.  相似文献   

13.
There are two approaches for applying substructuring preconditioner for the linear system corresponding to the discrete Steklov–Poincaré operator arising in the three fields domain decomposition method for elliptic problems. One of them is to apply the preconditioner in a common way, i.e. using an iterative method such as preconditioned conjugate gradient method [S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method, I.A.N.-C.N.R, 2000] and the other one is to apply iterative methods like for instance bi-conjugate gradient method, conjugate gradient square and etc. which are efficient for nonsymmetric systems (the preconditioned system will be nonsymmetric). In this paper, second approach will be followed and extensive numerical tests will be presented which imply that the considered iterative methods are efficient.  相似文献   

14.
The partial differential equation part of the bidomain equations is discretized in time with fully implicit Runge–Kutta methods, and the resulting block systems are preconditioned with a block diagonal preconditioner. By studying the time‐stepping operator in the proper Sobolev spaces, we show that the preconditioned systems have bounded condition numbers given that the Runge–Kutta scheme is A‐stable and irreducible with an invertible coefficient matrix. A new proof of order optimality of the preconditioners for the one‐leg discretization in time of the bidomain equations is also presented. The theoretical results are verified by numerical experiments. Additionally, the concept of weakly positive‐definite matrices is introduced and analyzed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq Eq 27: 1290–1312, 2011  相似文献   

15.
Based on the HSS (Hermitian and skew-Hermitian splitting) and preconditioned HSS methods, we will present a generalized preconditioned HSS method for the large sparse non-Hermitian positive definite linear system. Our method is essentially a two-parameter iteration which can extend the possibility to optimize the iterative process. The iterative sequence produced by our generalized preconditioned HSS method can be proven to be convergent to the unique solution of the linear system. An exact parameter region of convergence for the method is strictly proved. A minimum value for the upper bound of the iterative spectrum is derived, which is relevant to the eigensystem of the products formed by inverse preconditioner and splitting. An efficient preconditioner based on incremental unknowns is presented for the actual implementation of the new method. The optimality and efficiency are effectively testified by some comparisons with numerical results.  相似文献   

16.
曾闽丽  张国凤 《计算数学》2016,38(4):354-371
 有限元离散一类速度追踪问题后得到具有鞍点结构的线性系统,针对该鞍点系统,本文提出了一种新的分裂迭代技术.证明了新的分裂迭代方法的无条件收敛性,详细分析了新的分裂预条件子对应的预处理矩阵的谱性质.数值结果验证了对于大范围的网格参数和正则参数,新的分裂预条件子在求解有限元离散速度追踪问题得到的鞍点系统时的可行性和有效性.  相似文献   

17.
In this paper, an improved block splitting preconditioner for a class of complex symmetric indefinite linear systems is proposed. By adopting two iteration parameters and the relaxation technique, the new preconditioner not only remains the same computational cost with the block preconditioners but also is much closer to the original coefficient matrix. The theoretical analysis shows that the corresponding iteration method is convergent under suitable conditions and the preconditioned matrix can have well-clustered eigenvalues around (0,1) with a reasonable choice of the relaxation parameters. An estimate concerning the dimension of the Krylov subspace for the preconditioned matrix is also obtained. Finally, some numerical experiments are presented to illustrate the effectiveness of the presented preconditioner.  相似文献   

18.
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.  相似文献   

19.
An a posteriori error estimator is presented for a subspace implementation of preconditioned inverse iteration, which derives from the well‐known inverse iteration in such a way that the associated system of linear equations is solved approximately by using a preconditioner. The error estimator is integrated in an adaptive multigrid algorithm to compute approximations of a modest number of the smallest eigenvalues together with the eigenfunctions of an elliptic differential operator. Error estimation is applied both within the actual finite element space (in order to estimate the iteration error) as well as in its hierarchical refinement of higher‐order elements (to estimate the discretization error) which gives rise to a balanced reduction of the iteration error and of the discretization error in the adaptive multigrid algorithm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
1.IntroductionSeveralaspectsofthenonconfOrmingfi11iteelementmethodhavebeendiscussedin[1-51.Inthispaper,wewillintroducethemllltigridmethodandprovethatthemultigridmethodofnonconformingfiniteelementscanattainthesameoptimalconvergenceorderaJsthenonconformingflniteelementmethodinenergy-norm.Themultigridmethodofconformingfiniteelementshasbeen.t.died[7-8].Forthemultigridmethodofnonconformingfiniteele1nents,becausethefiniteelementspacesassociatedwiththenetsarenotnest(Vk-1ctVK),itisdifficulttodefinet…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号