首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Magnetic single-domain nanoparticles constitute an important model system in magnetism. In particular, ensembles of superparamagnetic nanoparticles can exhibit a rich variety of different behaviors depending on the inter-particle interactions. Starting from isolated single-domain ferromagnetic or ferrimagnetic nanoparticles, the magnetization behavior of both non-interacting and interacting particle ensembles is reviewed. Particular attention is given to the relaxation time of the system. In the case of interacting nanoparticles the usual Néel–Brown relaxation law becomes modified. With increasing interactions, modified superparamagnetism, spin glass behavior and superferromagnetism are encountered.  相似文献   

2.
We report studies on temperature, field and time dependence of magnetization on cupric oxide nanoparticles of sizes 9 nm, 13 nm and 16 nm. The nanoparticles show unusual features in comparison to other antiferromagnetic nanoparticle systems. The field cooled (FC) and zero field cooled (ZFC) magnetization curves bifurcate well above the Néel temperature and the usual peak in the ZFC magnetization curve is absent. The system does not show any memory effects which is in sharp contrast to the usual behavior shown by other antiferromagnetic nanoparticles. It turns out that the non-equilibrium behavior of CuO nanoparticles is very strange and is neither superparamagnetic nor spin glass like.  相似文献   

3.
In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures.Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5–1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the photothermal vaporization and Coulomb explosion processes of the Pd and Pt nanoparticles are invoked as possible mechanisms for the lumpy nanoparticles formation.  相似文献   

4.
The behavior of the spectral position of the absorption band of colloidal silver in photochromic glass is analyzed in relation to the variation in the refractive index of a thin layer of the medium (shell) that surrounds silver nanoparticles. It is shown that the appearance of a shell with a high refractive index leads to a long-wavelength shift in the plasmon absorption band of silver nanoparticles. These results make it possible to explain particular features of the absorption spectrum of photothermorefractive glasses.  相似文献   

5.
When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.  相似文献   

6.
The filtration efficiency for nanoparticles down to 1 nm in size through glass fibrous filters was measured using an improved PSM-CNC system. In addition, the effects of relative humidity and particle charge were investigated for various nanoparticle diameters. The results show that the filtration efficiencies were independent of humidity and affected by particle charge in the case of particles below 100 nm in size. For particles smaller than 2 nm, the particle penetrations increased with decreasing particle size. These results suggest that the thermal rebound phenomena would be operative for nanoparticles with diameters below 2 nm, even though it would depend on the states of both the particles and the filter media. These results are particularly important for experimental investigations of the behavior of nanoparticles on a filter.  相似文献   

7.
飞秒激光所致金纳米粒子析出的玻璃非线性吸收   总被引:5,自引:0,他引:5       下载免费PDF全文
依据Z-scan技术,使用波长532nm的纳秒脉冲,研究了通过聚焦的飞秒脉冲诱导并辅以热处理得到的金纳米粒子析出的玻璃的非线性吸收.观察到金纳米粒子析出的玻璃具有饱和吸收特性.根据局域场效应,对实验结果拟合,得到在接近表面等离子体共振激发情况下,金纳米粒子三阶极化率虚部分别为Imχ(3)m=57×10-7esu.玻璃样品中金纳米粒子的非线性响应主要起源于热电子贡献. 关键词: 带内跃迁 带间跃迁 热电子贡献  相似文献   

8.
We report a surface‐enhanced Raman spectroscopy (SERS) investigation to probe the adsorption and dynamic behavior of rhodamine 6 G (Rh6G) molecules on spherical Ag nanoparticles which were produced via laser ablation in liquid. Assembly of the colloidal Ag nanoparticles on a cover glass was used to work as SERS substrates on which high‐quality SERS spectra of Rh6G were obtained with interesting time dependence when using low and ultralow concentrations, respectively. The variation of SERS spectra over time was identified with the adsorption behavior of multiple and individual molecules on the Ag nanoparticles. Analysis indicates that the adsorbed Rh6G molecules can desorb away from the initial locations on the substrate under continuous laser excitation; simultaneously, some individual molecules can move and become trapped in the gap between the aggregated Ag nanoparticles. These investigations help to clarify the origins of forming ‘hot‐spots’ which host probe molecules and hence improve the understanding of mechanisms for single‐molecule SERS spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A series of silver nanoparticle embedded in erbium-doped tellurite glasses were synthesized using a one step melt-quenching method. Density and refractive index of glasses were measured. Thermal and optical characterizations were performed and plasmon bands of elliptical nanoparticles were observed. An enhancement of green (525 and 550 nm) and red (632 nm) lines in luminescence spectra of Er3+-doped silver-embedded tellurite glass was recorded and explained by energy transfer mechanism from silver nanoparticles to erbium ion in addition to enhanced local field in vicinity of metallic nanoparticles in the glass. The presence of nanoparticles was confirmed by transmission electron microscopy imaging and reduction of silver ions to silver neutral particles discussed through the redox potential estimation in probable reactions. Silver-erbium co-doped tellurite glass exhibits strong novel optical properties which nominate it as the promising glass for laser, color displays, and photonic applications.  相似文献   

10.
Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time–temperature regime and melt/glass transformation.  相似文献   

11.
The clusters of immunogold nanoparticles were fabricated through cross-linking immunogold nanoparticles with glutaraldehyde. A novel strategy for immunoassay signal amplification using the clusters of immunogold nanoparticles on glass slides based on electroless deposition was described. The immunoassay signal amplification through the clusters of immunogold nanoparticles was about three to four times higher than that through single immunogold nanoparticles. The purple attachments were readily discernible on glass slides by naked eye at a concentration of 0.1 pg/mL antigen in PBS solution. The indirect detection of antigen using the clusters of immunogold nanoparticles is an efficient way to improve the detection sensitivity.  相似文献   

12.
The effect of KrF excimer laser radiation on a composite layer consisting of sodium-potassium silicate glass with silver nanoparticles is studied as a function of the number of laser nanosecond pulses. The silver nanoparticles are synthesized by ion implantation. The measured optical absorption of the composite layer demonstrates that the silver nanoparticle size decreases monotonically as the number of laser pulses increases. Rutherford backscattering shows that laser annealing is accompanied by silver diffusion into the bulk of the glass and partial metal evaporation from the sample surface. The detected decrease in the silver nanoparticle size is discussed in terms of simultaneous melting of silver nanoparticles and the glass matrix due to the absorption of laser radiation.  相似文献   

13.
采用离子交换结合热处理的方法在碱石灰玻璃表面制备了银纳米颗粒。通过紫外-可见分光光度计、X射线衍射仪、扫描电子显微镜对样品进行了表征。结果表明:热处理时,银离子在玻璃表面成核并生长成近似长方形的纳米颗粒。吸收光谱在416nm附近出现明显的银纳米颗粒表面等离子体共振吸收特征峰。  相似文献   

14.
Nanocomposites comprising CuO particles of average diameter 21 nm coated with 5 nm silica glass containing iron ions were synthesized by a chemical route. An ion exchange reaction at the nanoglass/CuO interface produced iron-doped CuO with copper ion vacancies within the nanoparticles. Room temperature ferromagnetic-like behavior was observed in the nanocomposites. This was ascribed to uncompensated spins contributed by Fe ions with associated copper ion vacancies. A rather high value of magnetodielectric parameter in the range 16–26% depending on the measuring frequency was exhibited by these nanocomposites at a magnetic field of 10 KOe. This was caused by a magnetoresistance of 33% in the iron doped CuO nanoparticles. The experimental results were fitted to the Maxwell–Wagner Capacitor model developed by Catalan. These materials will be suited for magnetic sensor applications.  相似文献   

15.
The effects of grinding on interparticle magnetic interactions for an ensemble of agglomerated MnFe2O4 nanoparticles have been studied. Structural analyses showed that by grinding the samples, a small variation in size of crystallites and lattice strain will occur. ac Magnetic susceptibility measurements under different conditions and spin dynamics analysis suggest that freezing temperature is frequency dependent and it is in good agreement with critical slowing down model. This is an indication that these nanoparticles have superspin glass behavior. The estimated and τ0 parameters using critical slowing down model show that by increasing the grinding time the interaction between nanoparticles decreases. ac Susceptibility measurements in cooling and heating process show a thermal hysteresis. The thermal hysteresis decreased by increasing the grinding time. Also, the thermal hysteresis is frequency dependent and it increased as frequency decreased. These results showed that interparticle interactions such as dipole-dipole and exchange interactions between nanoparticles become weaker by grinding.  相似文献   

16.
Glass formation in simple monatomic nanoparticles has been studied by molecular dynamics simulations in spherical model with a free surface. Models have been obtained by cooling from the melt toward glassy state. Atomic mechanism of glass formation was monitored via spatio-temporal arrangement of solid-like and liquid-like atoms in nanoparticles. We use Lindemann freezing-like criterion for identification of solid-like atoms which occur randomly in supercooled region. Their number grows intensively with decreasing temperature and they form clusters. Subsequently, single percolation solid-like cluster occurs at temperature above the glass transition. Glass transition occurs when atoms aggregated into this single percolation cluster are in majority in the system to form relatively rigid glassy state. Solid-like domain is forming in the center of nanoparticles and grows outward to the surface. We found temperature dependence of potential energy, mean-squared displacement (MSD) of atoms, diffusion constant, incoherent intermediate scattering function, radial distribution function (RDF), local bond-pair orders detected by Honeycutt-Andersen analysis, radial density profile and radial atomic displacement distributions in nanoparticles. We found that liquid-like atoms in models obtained below glass transition have a tendency to concentrate in the surface layer of nanoparticles. However, they do not form a purely liquid-like surface layer coated nanoparticles.  相似文献   

17.
A GHARAATI  A KAMALDAR 《Pramana》2016,86(6):1329-1342
The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric constants. In the second step, the Maxwell–Garnett theory is exploited to replace the spherical nanoparticles with cylindrical and ellipsoidal ones, facilitating the calculation of the third-order nonlinear effective susceptibility for a degenerate four-wave mixing case. The results are followed by numerical computations for silver, copper and gold nanoparticles. It is shown, graphically, that the maximum and minimum of the real part of the reflection coefficient for nanoparticles of silver occurs in smaller wavelengths compared to that of copper and gold. Further, it is found that spherical nanoparticles exhibit greater figure-of-merit compared to those with cylindrical or ellipsoidal geometries.  相似文献   

18.
The effect of nanosecond excimer laser pulses on a composite layer of sodium-calcium silicate glass with silver nanoparticles has been investigated. Nanoparticles were synthesized by ion implantation. Based on measuring the optical absorption and reflection spectra of the composite layers, it is found that an increase in the number of laser pulses leads to a monotonic decrease in the size of silver nanoparticles. However, laser irradiation with a longer duration leads to the growth of nanoparticles with their subsequent destruction. The effects observed are discussed in terms of heating a glass composite layer as a result of the effective absorption of laser radiation.  相似文献   

19.
The action of KrF excimer laser radiation on the composite material consisting of the silica glass with copper nanoparticles is investigated as a function of the number of nanosecond laser pulses. Metal nanoparticles are synthesized by ion implantation. It is established using optical reflectance measurements of composite layers that, at the initial stage, the irradiation leads to the fragmentation of the largest nanoparticles. Then, after irradiation by several pulses, the particles become larger due to the heating of the glass. The laser treatment for a longer time (several tens and hundreds of pulses) results in the dissociation of nanoparticles into small clusters and individual atoms. The mechanisms responsible for the modification of the composite material under high-power laser radiation are discussed.  相似文献   

20.
邹志宇  刘晓芳  曾敏  杨白  于荣海  姜鹤  唐瑞鹤  吴章奔 《物理学报》2012,61(10):104208-104208
贵金属纳米粒子由于其非常独特的光学特性和表面活性, 在光子学、 催化和生物标识等方面都有非常重要的应用. 采用离子溅射和后续热处理相结合的方法在玻璃表面形成了尺寸大约为60-80 nm的单分散的球形金纳米粒子. 在适当的温度条件下, 采用步进式增加的强直流电场, 实现了金纳米粒子的电场辅助溶解过程. 在玻璃表面的不同颜色区域, 初始球形的金纳米粒子溶解成月蚀状形貌. 结合不同颜色区域内金纳米粒子的表面等离子体共振吸收性质和扫描电镜照片, 研究了实验条件对金纳米粒子性质的影响. 结合电场辅助溶解实验过程中的电流-电压特性, 分析了金纳米粒子在强直流电场辅助下溶解的物理过程: 金粒子中动出的电子向阳极的隧穿过程作为开始, 随后是金阳离子向玻璃基体中的传输过程和阴极提供的电子与带有正电荷的金粒子相结合的过程. 详细讨论了电场辅助溶解法实现金纳米粒子形貌控制的物理机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号